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1. Introduction

Finance theory generally posits that interest rates are predictable. In this way they are very

different from stock returns. For example the traditional expectations hypothesis models the

six-month yield as the average of the three-month spot rate and the three-month rate in three

months. Even when a liquidity premium drives a wedge between the two sides of this equation,

the future three-month spot rate should be predictable, conditional on the three-month and

six-month spot rates. In light of this many early and influential studies of term structure

models evaluated models’ predictive content. Fama (1976), Fama (1984), and Campbell and

Shiller (1991) are classic examples. Dai and Singleton (2002) summarize these studies noting

that a regression of the realized rate change on the change predicted under the expectations

hypothesis at the three month horizon generates a coefficient of −0.428, with a standard error

of 0.48. Under the expectations hypothesis this coefficient would be 1.

Considering the importance of interest rate predictability, both in practice, as well as for

testing and evaluating model efficacy, we use forecast accuracy as our statistical loss function.

We consider market yields on zero-coupon US Treasury securities from the period June 1989

through June 2007. This period precedes the global financial crisis, which is important since

the behavior of interest rates in the period starting in late 2007 through 2016 is quite different

from what it is in non-crisis periods. Our choice of time frame (a single operating policy regime

at the Fed) and use of rolling regressions is motivated by past analysis of interest rate behavior.

For example, Duffee (2006) finds evidence of a structural break in inflation dynamics and the

term structure between 1952 and 1994, and Piazzesi (2005) stresses the importance of Fed

policy in modeling the yield curve. Bansal and Zhou (2002) show that a two-factor CIR model

with regime switches could cause the documented violations of the expectations hypothesis,

over the period 1964 - 1995.

We find that during the 13 years prior to the global financial crisis, yield dynamics at the

short end of the US Treasury yield curve conform to the traditional expectations hypothesis.

This result is consistent with Longstaff (2000) who finds that general collateral repo rates con-

form to the pure expectations hypothesis, at up to the three month term, during the period

May 1991 through October 1999. Longstaff attributes the sharp contrast with earlier rejections

of the expectations hypothesis to his use of repo rates instead of yields on US Treasury securi-

ties, since the latter are influenced by liquidity and other security-specific features. Similarly,

Downing and Oliner (2007) find that yields on commercial paper conform to the traditional ex-
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pectations hypothesis in the period January 1998 to August 2003. Consistent with our results,

Downing and Oliner suggest that a change in Federal Reserve operating policy in 1994–toward

increased transparency–may be a reason for the dramatically improved performance of the

expectations hypothesis. Poole and Rasche (2000, 2003), also suggest that our sample period

covers a transparent Federal Reserve policy regime that has made it easier for the market to

anticipate policy changes.

Modern affine term structure models (ATSMs) also generate predictable interest rates.

These models start with a diffusion process for the state variable(s) that require mean re-

version to prevent infinite interest rates. An important feature of affine term structure models

is that they can produce forecasts of the entire yield curve. This allows us to consider forecasts

not only of future rate changes but also various term spreads. Duffee (2002) suggests that the

documented poor empirical fit of affine term structure models is due to their failure to repro-

duce the failure of the expectations hypothesis in the data. The fact that the expectations

hypothesis holds in our data means that we can deepen our understanding of why ATSMs fare

poorly empirically. The model forecast of future yields and spreads relies only on historical

yield dynamics. Financial markets incorporate Federal Reserve policy guidelines and stated

policies into interest rates. The information used by investors in determining the yield curve

is therefore much richer than historical yield curves.

To support this contention, we design encompassing tests of the Cox, Ingersoll, and Ross

(CIR) model, Aı̈t-Sahalia’s (1996) and Stanton’s (1997) nonparametric models of interest rate

dynamics, as well as the forward parity condition. The CIR model is attractive as it is a

member of the class of ATSMs that generates heteroskedastic rate dynamics and allows the

price of risk to vary with the state. We find that the models fare very poorly. Furthermore,

we use the time-series tests of Giacommini and White (2006) to evaluate the out-of-sample

predictive ability of the arbitrage model relative to other models using the root-mean-square

error (RMSE) criterion. We show that CIR’s RMSE is, in general, unconditionally and condi-

tionally statistically significantly higher than the martingale’s. Finally we ask whether there

are market conditions under which the model performs relatively better as part of a forecast

method. Here we find that there are no conditions in which CIR beats the martingale.

Our out-of-sample test design is appealing econometrically as we can test the no-arbitrage

ATSM without adding an auxiliary model of errors. The addition of an arbitrary error model

has important implications for empirical design, and has been analyzed by Renault (1997),
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Jacquier and Jarrow (2000), and Pastorello, Patilea, and Renault (2003). Moreover, Sims

(2003) and Johannes and Polson (2003) warn of the econometric and decision-theoretic diffi-

culties created by adding an auxiliary error model, in light of the high dimensionality of the

error space and the fact that the underlying arbitrage pricing theory provides no guidance on

constructing these errors.

Even if we ignore this joint hypothesis problem, Christoffersen and Jacobs (2004) caution

that adding an error model gives rise to the need to maintain consistency between the role that

errors play in estimation and inference when testing arbitrage-free models. They show that

out-of-sample tests of option pricing models may perform poorly when the auxiliary model and

estimator used at the estimation stage are not congruent with the quantity being forecast in

the inference stage. So, while it is salutary to avoid distorting parameter estimates and implied

state variables with an error model at the estimation stage, introducing an error model at the

inference stage gives rise to this asymmetric loss function problem. Piazzesi (2010, esp. p.726)

makes clear that this criticism applies to many classical studies.

Table 1 provides a synopsis of various approaches to estimate and test affine models. As is

evident in the table, most of the empirical work on ATSMs has added an auxiliary error model.

These error models may be justified on the basis that the model is only an approximation of

the truth, or an acknowledgment that most empirical studies interpolate zero-coupon yields

from coupon bonds. Nevertheless, these empirical tests are joint tests of the ATSM and the

error model.1 Like our methodology, Hong and Li (2005) do not add an error model at either

the estimation or inference step. Their tests show that the inverse transition density of the

implied state variables or yields have significantly different shapes and properties from what

the model’s transition density implies. We go one step further and show, using observed

zero-coupon yields, that the model is not only a poor approximation for the underlying data

generating process, but the model is also an uninformative forecasting method and an even

worse approximation for yield dynamics than the Martingale model.

The remainder of the paper is organized as follows. The next section presents our data and

the derivation of the alternative forecasts used in evaluating the ATSMs. Section 3 contains

our results as we move sequentially through the four stages of inference. Section 4 concludes
1Research on term structure models has continued apace since the global financial crisis. Much of this recent

research deals with the accommodative central bank policies in the aftermath of the crisis, see for example
Swanson and Williams (2014) and Monfort, Pegoraro, Renne, and Roussellet (2017). This literature establishes
that forecasting interest rates in the 10-year period following the end of our sample is a very different problem
from this paper’s focus, which is the behavior of US interest rates in non-crisis periods.
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the paper.

2. Empirical Analysis

2.1 Data

We hand collect zero-coupon yields from the Wall Street Journal and Bloomberg. We record

the closing ask yields-to-maturity on 3-month and 6-month Treasury bills, and approximately

5-, 15-, and 25-year principal STRIPS at a weekly frequency, on Wednesdays over the 942

week period starting on June 14, 1989 and ending on June 28, 2007. For those instances when

Christmas and the following New Year fall on Wednesdays we use data from the preceding

Tuesday. The US Treasury auctions 3- and 6-month bills every week, so the terms on these

two yields are constant throughout our sample. Our 5-year STRIPS are derived from 5-year

notes, which tend to be auctioned on a monthly basis, so the terms on these yields vary slightly

throughout the sample. The 25- and 15-year STRIPS are derived from 30-year Treasury bonds

whose availability is more restricted. This is especially true for the 15-year yield in the first

half of our sample. There are two dates when we reset the term on the 15-year yield by more

than one year: February 28, 1996 and December 3, 1997. In light of this, all forecasts that

involve the 15-year yield exclude these two dates. Principal components analysis on these five

yields show that the first eigenvalue accounts for 82.3% of the total variation, and the second

accounts for 17%; the first two eigenvalues account for 99.3% of the total variation across the

five yields.2

2.2 Variables and Models Used in Forecasts

2.2.1 CIR

Appendix A provides a summary of the CIR model. For the purpose of estimating a K-factor

CIR model we use the most recent 250 (weekly) observations on the yields on K zero-coupon

securities. As noted by Pearson and Sun (1994), this design implies a deterministic mapping

from the yields to the factors. So by including the Jacobian term in the likelihood we obtain

maximum likelihood estimates of the parameters governing factor dynamics and the risk premia

associated with the factors.

2Rudebusch and Tao (2008) also find that two factors are sufficient to model monthly US Treasury yields
during the 1988 - 2000 period. They suggest that this is because the sample period does not include “the period
of heightened interest rate volatility during the late 1970s and early 1980s;” (p. 909).
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Armed with the parameters and implied factor(s) on date t, we construct the τ−step ahead

forecast of factor zj (j = 1, · · · ,K) by:

E(zj,t+τ ) = zj,te
−κj ·τ + θj(1− e−κj ·τ ) (1)

Where, κj and θj are parameters that govern the dynamics of factor j (in the physical measure,

as shown in Appendix A). Under the model the factors evolve independently and, as shown

in Appendix A, yields at time t are linear functions of the factors. Note that the forecasted

yields are priced without error on every date in the estimation period. Under the model’s

assumptions we construct the expected future yield(s) conditional on the model and rolling

sample using (A.4).3

The likelihood function is neither smooth nor unimodal, making global optimization prob-

lematic. We use an optimization algorithm that starts with simulated annealing (following

Goffe, Ferrier, and Rogers 1994). After the simulated annealing procedure converges, we use a

gradient-based optimization in the neighborhood of this optimum. We repeat this procedure

using three different starting conditions and parameter bounds, and take the maximum.

2.2.2 Nonparametric Forecasts

At the 1-week horizon for the 3-month yield we also include forecasts from the nonpara-

metric (short-rate) models of Aı̈t-Sahalia (1996) and Stanton (1997). Stanton (1997) uses the

Nadaraya-Watson kernel estimator as follows:

µ̂(ξi) =
1

∆t

T−1∑
t=1

(xt+1 − xt)φ
(
ξi−xt
h

)
T−1∑
t=1

φ
(
ξi−xt
h

) (2)

Here, µ(ξi) is the expected change in yield from t to t+1, evaluated at ξi, i = 1, . . . N which

is an equally spaced grid over the support of yields over the past 250 weeks. The xt are the

observed yields (in levels) over the sample. We use N = 18 grid points. We follow Stanton (as

described in Chapman and Pearson 2000, p.360) and set the bandwidth, h = 4σ̂T− 1
5 , where

T is the length of the period used in estimating the model (250 weeks), and σ̂ is the sample

standard deviation of the changes in yields over this estimation period. φ(·) is the standard

unit normal probability density function. The 1-week ahead forecast is obtained by estimating

the 18 grid points µ̂(ξi), and then using linear interpolation to pin down the yield at date t
3There is no Jensen’s Inequality problem since the yield is linear in the state variables.
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within the range of ξ1 to ξN , and adding the forecast change to this last yield in the estimation

period.

Aı̈t-Sahalia (1996) posits an alternative nonparametric diffusion estimator. Since our focus

is only on forecasting the future rate, we use the µ function that he chose:

µ(xt) = α0 + α1xt + α2x
2
t + α3

1
xt
, (3)

where µ(xt) is the expected change in yield from t to t+1, and xt represents the level of the

yield at time t.

Note that both Aı̈t-Sahalia and Stanton’s estimators resemble Dickey-Fuller regressions: We

project changes in rates on the lagged level. Both nonparametric methods are single factor

models of short rate dynamics that allow for non-linear mean reversion.

2.2.3 Litterman and Sheinkman State Variables

We include the traditional yield curve factors as conditioning state variables in our analysis.

These are the level, slope and curvature of the yield curve. We measure the level as the 3-month

yield; the slope as the spread between the 25-year yield and the 3-month yield; and curvature

as the difference between the sum of the the 3-month and 25-year yields and twice the 5-

year yield. These variables were identified as yield curve factors by Litterman and Sheinkman

(1991). Diebold and Li (2006) show that these state variables have predictive content for yields

at horizons of two to four quarters.

2.2.4 The Forward Rate

The six-month spot rate is the average of the three-month spot rate and the three-month

forward rate. As noted in the introduction, the expectations hypothesis identifies the three-

month forward rate with the market’s expectation of the three-month spot rate three months

hence. We follow Longstaff (2000) and make no distinction between the different forms of the

expectations hypothesis.4 We regress the actual change in the 3-month spot rate from day t to

4Campbell (1986) shows that the empirical differences between alternative versions of the expectations hy-
pothesis are imperceptible at short maturities.
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day t+90 on the 3-month forward rate at t less the 3-month spot rate at t, for the 693 weeks

in our “out-of-sample” data, as in Campbell and Shiller (1991).5 The regression coefficient

on the independent variable in this regression is 0.85, with a (Newey-West) standard error of

0.22. Thus in our sample, we cannot reject the traditional expectations hypothesis. When we

add the realized changes in the Federal Reserve’s target federal funds rate to this regression,

the coefficient on this variable is 0.84 with a standard error of 0.06, and the coefficient on the

difference between the forward rate and spot rate falls to .08 with a standard error of .09.

While not formal (since we cannot argue that future Fed policy changes are exogenous), this

suggests that changes in the target federal funds rate are a significant driver of 3-month yields,

and that forward rates are a noisy proxy for these changes.

3. Results

Figure 1 shows the behavior of the 3-month yield over our out-of-sample period, along with

the predictions from the two-factor CIR model, the nonparametric models of Aı̈t-Sahalia and

Stanton, and the Federal Reserve’s stated target federal funds rate. This figure shows that all

models do a good job at forecasting 3-month interest rate levels, and these levels closely follow

the target federal funds rate. To avoid the well-known problems associated with forecasting

persistent series we focus on yield changes.

3.1 Encompassing Regressions

Inference at our first two stages relies on encompassing regressions (Fair and Shiller 1990).

The 250-week rolling estimation period means that our out-of-sample analysis covers the 693

weeks from week 251 (March 31, 1994) through the end of the sample. We conduct all inference

at three forecast horizons: 1-week, 4-week, and 13-week. Since the residuals in these regressions

are neither normally distributed nor independent under the null hypothesis in either Stage 1 or

Stage 2, we estimate the Newey-West (1987) heteroskedasticity and autocorrelation consistent

(HAC) variance-covariance estimators. For all regressions we also report the bandwidth from

Andrews’ (1991) procedure, which is the lag length used in adjusting the autocorrelations in

the standard errors.

5We measure the “3-month forward rate three months hence” on date t as follows: F 3m
t =

R6m
t ·τ6m−R3m

t ·τ3m

τ6m−τ3m
.

(Where R6m
t is the 6-month yield on date t, R3m

t is the 3-month yield on date t, τ3m and τ6m are the terms,
in years, of the 3- and 6-month yields, respectively.) Under the traditional pure expectations hypothesis, this
corresponds to the expected value of the 3-month rate in three months.
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3.1.1 Yield Changes

Encompassing regression results for changes in all individual yields are reported in Table II.

The baseline encompassing regressions are:

Rit+τ −Rit =α+ βCIR(R̂i,CIRt+τ −Rit) + βm(R̂3m,m
t+τ −Rit)

+ βllt + βsst + βcct + βf f̂t + εt (4)

where: Rit is the spot rate at time t on a zero coupon bond that matures in i−periods. R̂i,CIRt+τ

is the CIR model’s forecast conditional on information available at time t of the i−period spot

rate at time t+τ , and R̂3m,m
t+τ is the similarly defined forecast from the nonparametric models of

Aı̈t-Sahalia (1996) and Stanton (1997) at the 1-week forecast horizon. Note that these latter

two models are only used to forecast the 3-month yield. The additional (exogenous) state

variables introduced in the preceding section, are: the level, lt, slope, st, and curvature, ct, of

the yield curve on date t; and f̂t = F 3m
t − R3m

t , the difference between the 3-month forward

rate, three months hence, and the 3-month spot rate on date t.

Stage 1 and Stage 2 inference may be formalized as:

Stage 1 : H0 : α = 0;βCIR = 1;βm = 0

Stage 2 : H0 : βCIR = 0; HA : βCIR > 0

To avoid introducing an error, our research design requires that the forecasted rate be used

in estimating the model, so when estimating a two-factor model we must choose a (single)

companion rate. In this case, each of the possible pairs provides a distinct forecast. We

construct forecasts using all possible pairs. To preserve space, we report results using the

companion yield that provides the highest t-statistic on the CIR model’s slope coefficient at

the one week ahead forecast horizon (τ = 1) encompassing regression.6 For formal inference

6If the ATSM were true, its stochastic singularity implies that all choices of companion rate would result
in identical forecasts. We are willing to entertain the situation in which the model is rejected, to explore
whether it can serve as tool to extract useful forecasting information from the data. In addition to stochastic
singularity, there are identification issues that inform this procedure. For example, if we estimated the two-
factor model using only the two T-Bill yields, the likelihood surface tends to be flatter than in cases where the
model is estimated using yields on a bill and a STRIPS. Longer term rates are especially informative in terms
of identifying the risk premia.

8



we use Monte Carlo to construct the density of the maximum of four t−statistics under the

null hypothesis.7

The dependent variable in Table II, Panel A is the change in the 3-month yield. For ease of

interpretation the t−statistics are for the Stage 2 null hypothesis that the coefficient equals zero.

Nevertheless, it is obvious that we reject the Stage 1 hypothesis that the intercept is zero and

the coefficient on CIR is one. The model’s Stage 1 orthogonality restriction is also uniformly

rejected as the coefficient on the alternative exogenous variables, the level and the difference

between the forward rate and spot rate, are uniformly statistically significant. For this yield

the only case where the CIR model contains incremental information in the encompassing

regression (i.e., Stage 2 inference) is when the one-factor model is used to construct a forecast at

the 1-week horizon. Overall, the method of Aı̈t-Sahalia provides useful forecasting information

at the 1-week horizon, although the sign is negative. Here we also see that the coefficient on

the forward rate minus the spot rate at the 13-week horizon is not statistically different from

unity–even in the presence of the other state variables and CIR forecast. This reinforces the

empirical support for the traditional expectations hypothesis in our sample period.

The results for the 6-month yield, shown in Table II, Panel B, are very similar to those

for the 3-month yield. The main exceptions are that the coefficient on the CIR model is

never statistically significant, curvature is significant at the 1-week horizon, and the difference

between the 3-month forward rate and the spot rate is only significant at the 13-week horizon.

Turning to the three STRIPS yields in Table II, Panels C, D and E, we see that the only case

where CIR is a significant predictor (with a positive coefficient) is for the two-factor model’s

forecast of the 5-year yield at the 1-week horizon (Panel C). Unlike the two shorter-term rates,

the level and the forward minus spot are not significant (at the 5% level) in any of these

encompassing regressions. The slope is never statistically significant. Indeed for the 15- and

25-year yields none of the exogenous regressors is significant at any horizon.

Figure 2 provides some insight to the models’ forecast performance. The figure charts

forecasts of the 3-month rate at the 13-week horizon. We see in Figure 1 that the 3-month

yield is gradually and monotonically increasing until late 1995, reflecting the rising federal

funds target rate. By contrast, in Figure 2 the CIR model predicts that the 3-month rate
7These distributions are constructed with 10 million draws. We construct the p−values for one-sided tests.

The 5% critical value for the maximum of four t-statistics is 2.24 for a one-tailed test (and 2.50 for the cor-
responding two-tailed test). We also use these critical values for the 4- and 13-week forecast horizons. In all
analysis, we use a one-tail test (that the coefficient is significantly positive) for CIR and two-tail tests for all
other exogenous forecasts.

9



will fall over this same period, as the model anticipates rates will regress to the sample mean.

As Clarida, Gali, and Gertler (2000) and others note, however, target rates exhibit inertia as

monetary policy is implemented smoothly over time. Hence, as the Fed’s target rate gradually

falls in late 1994, CIR forecasts start to rise. In general, as the target federal funds rate

changes, CIR predicts the short rates will move oposite the federal funds rate changes. CIR

forecasts of the short rates fail to account for monetary policy inertia.

3.1.2 Changes in Term Spreads

Cheridito, Filipović and Kimmel (2007) and Duarte, Longstaff, and Yu (2007) suggest that

ATSMs may do a better job at forecasting the dynamics of a cross-section of yields than a

single yield. So in this sub-section we evaluate forecasts of the spreads between all of the yield

pairs in our sample. Forecasting a function of two yields removes the question of which yield

pair should be used to estimate the model; both yields are used to ensure that the model

fits the data without error on the date the forecast is constructed. We report the following

encompassing regressions in Table III:

(Rit+τ −R
j
t+τ )− (Rit −R

j
t ) =α+ βCIR

[
(R̂i,CIRt+τ − R̂j,CIRt+τ )− (Rit −R

j
t )
]

+ βllt + βsst + βcct + βF f̂t + εt (5)

where all variables are as defined above. Here the variable being forecast is the spread between

two rates at a τ− step ahead horizon. Stage 1 inference soundly rejects the model as the only

case (of the 30 considered) where the coefficient on the CIR forecast spread is statistically

larger than zero, and not distinguishable from one, is the spread between the 25-year and

15-year yields at the 4-week horizon. But in this case, the coefficient on the curvature is also

significant. As for Stage 2, the only other case where the coefficient on the CIR forecast is

statistically larger than zero is for the spread between the 5-year and 6-month yields at the

1-week horizon, and this coefficient is significantly smaller than one. Also the coefficients on

the slope and curvature are statistically significant in this regression.

Since we saw in Table II that the difference between the forward rate and the spot rate

predicts the 3-month yield it is not surprising that this variable has significant predictive

content when forecasting the spreads between longer yields and this short rate. In Panel D, for

example, which considers the spread between the 25-year yield and the 3-month yield, if the

forward rate is 100 basis points above the spot rate, then we expect that the spread between

the 25-year and 3-month yields will decline by 102 basis points over the next 13 weeks. The
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convexity of the yield curve as measured by curvature also has predictive content for several

of our pairwise yield spreads.

3.2 Conditional Predictive Ability of Forecasting Methods

In light of formal rejection at Stages 1 and 2, our interest shifts to whether the model has

any information as a forecasting tool. Stage 2 encompassing regressions are not conclusive

on this point for several reasons. First, since the forecast weights are estimated, the Stage

2 analysis of the model’s incremental information is evaluated ex post. Furthermore these

weights are affected by the correlations between competing forecasts. To be truly out-of-

sample, as well as to allow consideration of the total information content of the model, we test

the arbitrage model’s predictive ability by comparing the relative sizes of forecast errors from

the model with those from the martingale model. Meese and Rogoff (1983) suggest that an

informal comparison of the RMSE from structural models to that from a martingale model is a

useful assessment of the model’s economic viability. A comparison to the martingale model is

attractive in that an informative model should be able to outperform a forecast that the future

rate will equal its current level. While Cheridito, Filipović, and Kimmel (2007) and Duffee

(2002) report RMSEs of the martingale model and various ATSMs, neither study provides a

formal, statistical comparison of the competing models’ RMSEs. Diebold and Mariano (1995)

and West (1996) develop a statistical framework that affords a formal comparison the RMSEs

of two models. Clark and West (2006) show that these tests may be biased when the martingale

model is included in the analysis. Because we have already formally rejected the CIR model, we

use the approach proposed by Giacomini and White (2006) which, in addition to circumventing

this problem, allows for model mis-specification and is robust to unmodeled heterogeneity.

The Giacomini and White test formally compares the predictive ability of alternative fore-

casting methods. Our Stage 3 inference evaluates whether the arbitrage model can produce a

forecast that is at least as good as the naive martingale model. Whether we reject at Stage

3 or not, it is conceivable that alternative models produce the best available forecast under

certain market conditions. The Giacomini and White test allows us to analyze whether CIR

as a forecasting method produces informative forecasts under specific market conditions. We

characterize those conditions in our Stage 4 analysis.

Define ∆Lt+τ as the difference in the squared error of the two models’ forecasts of the

yield or spread at time t+τ , conditional on the information set at time t, Ft. The null
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hypothesis is that, conditional on Ft the difference between the predictability of the two models

is zero: E [∆Lt+τ |Ft] = 0. As Giacomini and White (2006) point out, the null hypothesis that

∆Lt+τ is a martingale difference sequence allows us to write an orthogonality restriction that

E [ht∆Lt+τ ] = 0 for all Ft measurable functions ht. Using a q−dimensional vector, ht,

Giacomini and White’s Wald statistic has the form

T hm,n = n

(
n−1

T−1∑
t=m

ht∆Lt+τ

)′
Ω̂−1

(
n−1

T−1∑
t=m

ht∆Lt+τ

)
(6)

where n is the number of (overlapping) observations, m is the size of the rolling estimation

window, and Ω̂ is the estimated covariance matrix of the sample conditional moment restric-

tion, 1
n

T−1∑
t=m

ht∆Lt+τ = 0. The test statistic is asymptotically distributed as chi-square with

q degrees of freedom. As with the encompassing regressions, we construct Ω̂ using Andrew’s

(1991) bandwidth procedure to identify the lag length used to calculate the Newey-West (1987)

covariance estimator.

The performance of this χ2 test statistic depends on the choice of ht. We specify h
′
t ={

1, lt, st, ct, f̂t
}

, and report the statistic for both the unconditional, (h
′
t = {1}) and conditional

tests.

Stage 3 : H0 : E[∆Lt+τ | Ft] = 0

Stage 4 : Estimate E[ht − h̄ | ∆Lt+τ < 0]

Table IV contains all of the RMSEs for forecasts of the change in each interest rate from

all of the models discussed above and the martingale. For each yield, at each horizon, the

forecast with the lowest RMSE is in bold face. We test the null hypothesis that the model

produces a forecast that is no more accurate than the martingale using the Giacomini and

White conditional χ2 test statistic. We report the unconditional test statistic in parentheses

and the conditional test statistic in brackets below the RMSE.

The ATSM fares poorly in our Stage 3 tests. A CIR model produces a lower RMSE than

the martingale in only one of the 15 yield/horizon cases; the 13-week horizon forecast of the

25-year yield (Panel E). For this one case, estimating CIR with the 25-year yield and either

the 6-month or 5-year yield results in a lower RMSE than the martingale, but neither of these

differences is statistically significant. By contrast, at both shorter horizons the martingale

RMSE is statistically smaller than all CIR models. In fact, the only other cases where the CIR
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model’s RMSE is not significantly larger than the martingale’s are at the 1-week horizon for

the 5- (Panel C) and 15-year (Panel D) yields.

In Panel A, the 3-month forward rate at the 13-week forecast horizon also has a significantly

smaller RMSE than any CIR model, though at the 1-week horizon the CIR models produce

forecasts with significantly lower RMSEs than either nonparametric forecast. For these two

short rates (Panel A and Panel B) the one-factor CIR model forecasts have smaller RMSEs

than those from all two-factor CIR models at all three horizons. Amongst the three longer-

term yields the one-factor model has a lower RMSE than all two-factor models only for the 1-

and 4-week horizon forecasts of the 25-year yield.

Turning again to the models’ cross-sectional restrictions, in Table V we consider statistical

comparisons of the RMSEs of all pairwise spread forecasts. The martingale produces a signifi-

cantly smaller RMSE in 26 of the 30 cases, including all three horizons for the following yield

pairs: 5-year and 3-month, 15-year and 3-month, 5-year and 6-month, 15-year and 6-month,

and 25-year and 6-month. The only case where the CIR model produces a significantly lower

RMSE than the martingale is the 4-week horizon forecast of the spread between the 25-year

and 15-year yields.

Interestingly there is only one case in Table V, and ten cases in Table IV where qualitative

inference is affected by the choice of ht (assuming a critical value of 5%). Generally, adding the

four state variables to ht reduces the test’s power–so we reject the null unconditionally, but fail

to reject conditionally. The exception–where the state variables increase the test’s power–is

for the comparison between the squared forecast errors from the martingale and difference

between the forward rate and spot rate for the 3-month yield forecast at the 13-week horizon.

3.3 Conditional Predictive Ability: Decision Rule Assessment

Giacomini and White (2006, p.1569) suggest using the state variables in a decision rule

assessment to enhance the information contained in the test. Since Stage 3 is like Stages 1 and

2 in soundly rejecting the ATSM, we now ask whether there are any conditions under which

the arbitrage model does better than the martingale. We follow Giacomini and White (2006)

and project ∆Lt onto ht to ascertain the conditions under which one model is preferred to

another. In general, we find that the ATSM does relatively better in periods when the level

variable (i.e., the short rate) and slope are relatively high and when the curvature and spread

13



between the forward and spot rates are relatively low. However, the overarching conclusion is

that the martingale beats the CIR model uniformly.

Table VI and Figure 3 provide more information on assessment of the model forecast errors.

In Table VI we report the effect of a one standard deviation increase in each of the yield

curve state variables for those cases where the coefficient on the state variable is statistically

significant in the regression of ∆Lt on ht. A glance at this table reveals that for all three long

rates and for most of the yield spreads, there is no statistically significant relationship between

the relative RMSEs (of CIR and the martingale) and the state variables. The situation is

different for the two shorter-term yields. Consider the 13-week ahead forecast of the 6-month

yield. In this case the RMSE of the one-factor CIR model is 4.237 basis points higher than that

from the martingale. A one standard deviation decrease in the spread between the spot and

forward rate would result in the CIR model’s RMSE being 2.076 basis points lower than the

martingale. The only other cases in Table VI where the CIR RMSE falls below the martingale

RMSE are for the 13-week ahead forecast of the 3-month yield, where a one standard deviation

increase in this yield or a one standard deviation decrease in the forward rate minus this yield

bring the CIR RMSE below the martingale’s. The only yield spread where the relationship

between the squared errors is state-dependent is that between the 15- and 5-year yields. The

martingale RMSE is lower than that from the two-factor CIR by 0.914 basis points. When

the 90-day yield is one standard deviation above its mean, this difference falls to 0.178 basis

points (but the martingale is still better).

Figure 3 provides a graphical representation of our Stage 4 assessment for the mean square

error from the indicated CIR model minus the mean square error from the martingale forecasts

for: the 3-month yield at the 1-week forecast horizon plotted against the slope (Panel A), the

3-month yield at the 4-week horizon plotted against the forward rate minus the level (Panel

B), the 6-month yield at the 13-week horizon plotted against curvature (Panel C), and the

spread between the 15-year and 5-year yields at the 13-week horizon plotted against the level

(Panel D). In Panel A we see that the martingale and CIR perform similarly when the yield

curve’s slope exceeds 4% and when the yield curve is downward sloping.

In Figure 3, Panel B, we see that CIR forecasts are much worse than those from the martin-

gale when the spread between the 3-month forward exceeds the 3-month yield by more than 75

basis points. We can see from Figures 1 and 2 that this occurs most commonly in the first year

of our out-of-sample period, when both the 3-month yield and the target federal funds rate are

14



generally rising, whereas the CIR model is forecasting a drop in the short rate. In Panel C we

see that the CIR forecast of the 6-month yield in 13 weeks is better than the martingale when

curvature is highest. CIR does worse when the yield curve is linear (i.e., curvature is zero),

and when there is negative convexity. In Panel D we see that both the CIR and martingale

forecasts of the spread between the 15-year and 5-year yields exhibit a high variance when

the 3-month yield is less than 2%. In Figure 1, we see that this is the period following the

September 11, 2001 disruptions through early 2005. By contrast, CIR tends to outperform the

martingale forecast of this portion of the yield curve’s slope when the 3-month yield exceeds

5%.

4. Conclusion

We design a sequence of tests that do not entail adding an auxiliary error model to an

arbitrage-free affine term structure model, and which allow us to test the model as the data

generating process as well as a forecasting tool. This allows us to reject the notion that the

model’s poor empirical performance is the result of an unfortunate choice of error model. We

soundly reject the model as the data generating process, and find the model provides little to no

incremental information about future yield changes or yield spreads. Similarly, as a forecasting

tool the model fares poorly, producing root mean square errors that are statistically larger than

those of the Martingale model.

Interest rate behavior in our sample is different from that in earlier periods. Our sample is

restricted to the post-Greenspan era, where Longstaff (2000) and Downing and Oliner (2007)

provide evidence that the expectations hypothesis holds, in part due to transparent monetary

policy. Clarida, Gali, and Gertler (2000) and others document that monetary policy is imple-

mented gradually, through successive increases or cuts to the target policy rate. Affine models

fail to account for these complex dynamics, and instead forecast reversion to the historical

mean as the policy rate changes. Duffee (2002) suggests that the poor empirical fit of affine

term structure models is due to their failure to reproduce the failure of the expectations hy-

pothesis in the data. As we also find support for the expectations hypothesis, the failure of the

CIR model in this study complements Duffee’s result. Here the CIR model fails at the short-

end of the yield curve because it cannot reproduce the success of the traditional expectations

hypothesis in our data.
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Appendix A. The CIR Model

Cox, Ingersoll, and Ross (1985) model an equilibrium, no-arbitrage economy, with a repre-

sentative agent. From a theoretical point of view, the model links the data on yields to one or

more latent independent factors. The model posits that the time series evolution of this latent

factor is a mean-reverting, square-root process:

dzj = κj(θj − zj)dt+ σj
√
zjdωj , (A.1)

where:

j = 1, · · · ,K (the number of factors), and

ωj is a Wiener process.

Feller (1951) shows that the transition density for any zj at time t + τ conditional on its

realization at time t is given by: (suppressing the j subscript)

f(zt+τ |zt) = c e−u−ν
(ν
u

)q/2
Iq(2(uν)1/2), (A.2)

where:

c = 2κ
σ2(1−e−κ·τ )

u = czte
−κ·τ

ν = czt+τ

q = 2κθ
σ2 − 1

Iq is a modified Bessel function of the first kind of order q.

Bond prices depend on the current value of the state variable, as well as its expected evolu-

tion, along with a risk premium, λ. Specifically, the price of a τ -year bond, at time t is:

Pt,t+τ =
K∏
j=1

Λj,t,τ e−βj,t,τ ·zj,t , (A.3)
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where:

Λj,t,τ =
[

2γje
[(κj+λj+γj)τ ]/2

(κj+λj+γj)(e
τγj−1)+2γj

]2κjθj/σ
2
j

βj,t,τ = 2(eτγj−1)
(κj+λj+γj)(e

τγj−1)+2γj

γj = ((κj + λj)2 + 2σ2
j )

1/2.

For zero coupon bonds, the continuously compounded yield to maturity is:

Rt,t+τ =

K∑
j=1

(βj,t,τ · zj − log Λj,t,τ )

τ
. (A.4)
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Table II (Continued)

Yield Change Encompassing Regressions

Panel C: 5-year yield

Horizon Treasuries Used in Forward Rate

(weeks) Estimating CIR Intercept CIR Level Slope Curvature Minus Spot Rate Bandwidth

1 5-year -1.90 0.401 0.000 0.006 0.024* 0.037 2

(-0.48) (1.39) (-0.04) (0.84) (1.93) (1.58)

1 6-month & 5-year -2.38 0.278*** 0.001 0.006 0.025** 0.040* 2

(-0.61) (3.68) (0.09) (0.79) (2.02) (1.70)

4 5-year -0.22 0.012 -0.012 0.007 0.086** 0.138 25

(-0.01) (0.02) (-0.42) (0.24) (2.02) (1.51)

4 6-month & 5-year -1.09 0.222 -0.010 0.007 0.089** 0.146 25

(-0.06) (1.28) (-0.36) (0.22) (1.46) (-0.91)

13 5-year 1.54 -1.701 -0.044 -0.015 0.249** 0.339* 60

(0.03) (-1.60) (-0.60) (-0.20) (2.58) (1.70)

13 6-month & 5-year 11.29 -0.073 -0.053 0.002 0.255*** 1.66* 62

(0.29) (-0.21) (-0.87) (0.02) (2.70) (1.66)

Panel D: 15-year yield

1 15-year 2.10 -1.673 -0.005 -0.004 0.894 0.134 3

(0.59) (-2.68) (-0.92) (-0.55) (0.89) (0.13)

1 5-year & 15-year 1.96 0.226 -0.004 -0.002 0.010 0.001 3

(0.55) (1.03) (-0.67) (-0.33) (0.90) (0.03)

4 15-year 11.96 -2.81 -0.031 -0.028 0.035 0.027 20

(0.80) (-2.38) (-1.23) (-0.95) (0.89) (0.36)

4 5-year & 15 year 13.09 -0.200 -0.025 -0.022 0.034 0.101 20

(0.90) (-0.66) (-1.09) (-0.79) (0.88) (0.14)

13 15 year 39.04 -3.640 -0.104 -0.101 0.074 -0.003 41

(0.97) (-3.09) (-1.48) (-1.27) (1.00) (-0.02)

13 5-year & 15 year 46.90 -0.590 -0.087 -0.082 0.084 -0.052 42

(1.24) (-0.98) (-1.43) (-1.17) (1.13) (-0.36)

Panel E: 25-year yield

1 25-year 2.65 -0.726 -0.005 -0.004 0.003 -0.011 1

(0.89) (-1.23) (-0.97) (-0.77) (0.28) (-0.60)

1 5-year & 25-year 2.87 -0.652 -0.005 -0.005 0.002 -0.013 1

(0.96) (-1.00) (-0.98) (-0.80) (0.23) (-0.73)

4 25-year 6.57 -1.691 -0.018 -0.014 0.036 0.012 22

(0.51) (-1.35) (-0.85) (-0.59) (1.08) (0.18)

4 5-year & 25-year 8.24 -1.548 -0.018 -0.015 0.034 -0.007 21

(0.63) (-1.77) (-0.81) (-0.61) (0.99) (-0.11)

13 25-year 16.27 -2.378 -0.054 -0.045 0.082 -0.021 48

(0.50) (-1.67) (-0.96) (-0.73) (1.36) (-0.15)

13 5-year & 25-year 26.39 -1.164 -0.051 -0.049 0.070 -0.107 48

(0.78) (-1.16) (-0.91) (-0.79) (1.15) (-0.82)

25



Table II (Continued)

Yield Change Encompassing Regressions

This table contains encompassing regressions projecting changes in market yields on 3-month, 6-month
Treasury bills and approximate 5-year, 15-year and 25-year STRIPS, at the 1-, 4-, and 13-week horizons
onto exogenous forecasts.

Rit+τ −Rit =α+ βCIR(R̂i,CIRt+τ −Rit) + βm(R̂90,m
t+τ −Rit)

+ βllt + βsst + βcct + βf f̂t + εt

Where: Rit is the yield on an i-period 0-coupon Treasury security at time t; R̂i,CIRt+τ is the forecast of
the i-period 0-coupon Treasury security at time t+τ , from the CIR model, conditional on information
available at time t; lt is the level of the yield curve at time t, (i.e., the 3-month yield); st is the slope of
the yield curve at time t, (i.e., the spread between the 25-year and 3-month yields); ct is the curvature
of the yield curve at time t, (i.e., the difference between the spread between the 25-year and 3-month
yields and the squared 5-year yield); f̂t is the difference between the 3-month forward rate, three months
hence on date t and the 3-month spot rate on date t; and R̂90,m

t+τ is the forecast of the 3-month yield at
time t+τ , from model m– the nonparametric models of Aı̈t-Sahalia and Stanton for the 1-week ahead
forecast.

At each forecast horizon, τ , two separate encompassing regressions are reported. Both regressions
include the level, slope, and curvature of the yield curve and the difference between the 3-month forward
rate, three months hence and the 3-month spot rate, as independent variables. The first regression adds
the forecast yield change from a one-factor CIR model, while the second regression includes the forecast
change from a two-factor CIR model. For the 3-month yield at the one week horizon both regressions also
include the forecast change predicted by Aı̈t Sahalia’s (1996) model and Stanton’s (1997) model. When
estimating the CIR model, we always include the yield being forecast. For the two-factor CIR model,
we report only regression results for the combination of yields that results in the highest t-statistic
on the two-factor CIR model, at the 1-week horizon. Thus, the t-statistic on the coefficient on the
two-factor CIR forecast should be thought of as the maximal t-statistic among the 4 combinations that
could be used in estimation, meaning that standard tables should not be used for statistical inference.
Statistical significance tests are one-tail (i.e., > 0) for CIR forecasts, and two-tail (i.e., 6= 0) for all other
exogenous variables. We denote statistical significance at the 10%, 5%, and 1% levels as *, **, and ***,
respectively. The bandwidth is the lag length used in calculating the Newey-West (1987) autocovariance
matrix. The yields are forecast beginning on 24 March 1994 and ending on 28 June 2007 (693 weeks).
We use a rolling sample with 250 weekly observations to estimate the model parameters.



Table III

Yield Spread Change Encompassing Regressions

Panel A: Forecast of 6-month / 3-month Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 4.04 0.052 0.001 -0.003 -0.041*** -0.137*** 5
(1.42) (0.10) (0.15) (-0.67) (-3.19) (-4.09)

4 6.19 0.108 0.000 -0.002 -0.059*** -0.217*** 14
(0.91) (0.40) (0.02) (-0.22) (-2.89) (-4.91)

13 5.88 0.041 0.000 0.009 -0.037 -0.282*** 21
(0.44) (0.19) (0.01) (0.38) (-1.12) (-4.20)

Panel B: Forecast of 5-year / 3-month Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 -3.50 0.106 0.010 0.012 0.016 -0.087*** 1
(-0.95) (1.34) (1.59) (1.78) (1.28) (-3.23)

4 -9.47 0.000 0.025 0.033 0.085** -0.223** 24
(-0.62) (0.00) (1.04) (1.26) (1.99) (-2.36)

13 -44.21 -0.503 0.106** 0.099* 0.323*** -0.491*** 53
(-1.51) (-2.98) (2.21) (1.74) (4.76) (-2.62)

Panel C: Forecast of 15-year / 3-month Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 -0.16 0.235 0.007 0.006 0.003 -0.127*** 3
(-0.04) (1.59) (1.13) (0.79) (0.20) (-3.63)

4 2.61 -0.148 0.015 0.005 0.038 -0.337*** 21
(0.18) (-0.85) (0.68) (0.20) (0.85) (-3.37)

13 4.93 -0.424 0.054 -0.004 0.125 -0.899*** 37
(0.13) (-1.54) (0.85) (-0.06) (1.43) (-3.72)



Table III (Continued)

Yield Spread Change Encompassing Regressions

Panel D: Forecast of 25-year / 3-month Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 1.39 -0.125 0.005** 0.001 -0.006 -0.135*** 1
(0.38) (-0.53) (0.96) (0.19) (-0.48) (-4.00)

4 0.32 -0.322 0.021 0.006 0.026 -0.349*** 22
(0.03) (-1.27) (1.12) (0.27) (0.63) (-3.23)

13 -8.52 -0.284 0.081 0.021 0.071 -1.015*** 41
(-0.30) (-1.16) (1.64) (0.44) (0.82) (-3.49)

Panel E: Forecast of 5-year / 6-month Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 -7.75** 0.193*** 0.009* 0.016*** 0.058*** 0.049 2
(-2.45) (2.44) (1.84) (2.76) (4.04) (1.46)

4 16.16 0.001 0.026 0.036* 0.143*** -0.004 23
(-1.25) (0.01) (1.22) (1.74) (3.16) (-0.04)

13 -39.86 -0.322 0.088* 0.078 0.328*** -0.257 42
(-1.48) (-1.95) (1.95) (1.59) (4.10) (-1.27)

Panel F: Forecast of 15-year / 6-month Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 -4.07 0.142 0.006 0.008 0.044*** 0.012 4
(-1.13) (0.71) (1.08) (1.29) (2.77) (0.32)

4 -3.32 -0.026 0.015 0.005 0.096* -0.114 20
(0.18) (-0.99) (1.86) (-2.51) (3.65) (4.79)

13 -3.21 -0.365 0.057 -0.007 0.158 -0.642*** 32
(-0.09) (-1.03) (0.94) (-0.11) (1.63) (-2.68)

Panel G: Forecast of 25-year / 6-month Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 -2.45 -0.211 0.004 0.034 0.034** 0.005 2
(-0.74) (-0.75) (0.87) (0.59) (2.35) (0.12)

4 -3.47 -0.453 0.018 0.002 0.078 -0.124 22
(-0.29) (-1.52) (0.93) (0.09) (1.52) (-1.08)

13 -10.58 -0.210 0.075 0.008 0.096 -0.758** 36
(-0.36) (-0.76) (1.44) (0.17) (0.95) (-2.58)



Table III (Continued)
Yield Spread Change Encompassing Regressions

Panel H: Forecast of 15-year / 5-year Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 3.70* 0.136 -0.003 -0.008** -0.013 -0.038** 6
(1.90) (0.98) (-1.17) (-2.15) (-1.54) (-1.99)

4 8.82 0.060 -0.004 -0.020* -0.040 -0.126** 15
(1.43) (0.39) (-0.48) (-1.93) (-1.60) (-2.43)

13 18.49 0.087 0.001 -0.047* -0.131** -0.386*** 29
(1.19) (0.37) (0.02) (-1.93) (-2.20) (-3.01)

Panel I: Forecast of 25-year / 5-year Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 5.16** -0.361 -0.005 -0.011** -0.023** -0.052** 3
(2.03) (-1.31) (-1.22) (-2.28) (-2.37) (-2.51)

4 10.96 -0.252 -0.005 -0.025* -0.064** -0.163*** 20
(1.24) (-0.54) (0.37) (-1.74) (-2.32) (-2.73)

13 21.43 -0.890 0.000 -0.053 -0.203*** -0.455*** 42
(1.08) (-1.54) (0.01) (-1.62) (-3.13) (-3.00)

Panel J: Forecast of 25-year / 15-year Spread
Horizon Intercept Forward Rate
(Weeks) (Basis Points) CIR Level Slope Curvature minus Spot Rate Bandwidth

1 1.84 1.174 -0.002 -0.004* -0.012*** -0.016** 9
(1.44) (1.33) (-0.94) (-1.70) (-3.08) (-2.46)

4 3.21 1.634** -0.002 -0.010 -0.030** -0.037* 11
(0.76) (2.22) (-0.36) (-1.22) (-2.49) (-1.73)

13 6.39 0.888 -0.005 -0.020 -0.095*** -0.091 19
(0.55) (0.86) (-0.26) (-0.90) (-3.01) (-1.52)

This table contains the encompassing regressions for changes in the ten pair-wise term spreads amongst
the five yields in our sample at the 1-, 4-, and 13-week horizons.

(Rit+τ −R
j
t+τ )− (Rit −R

j
t ) =α+ βCIR

[
(R̂i,CIRt+τ − R̂j,CIRt+τ )− (Rit −R

j
t )
]

+ βllt + βsst + βcct + βf f̂t + εt

Where: Rit is the yield on an i-period 0-coupon Treasury security at time t; R̂i,CIRt+τ is the forecast of
the i-period 0-coupon Treasury security at time t+τ , from the CIR model, conditional on information
available at time t; lt is the level of the yield curve at time t, (i.e., the 3-month yield); st is the slope of
the yield curve at time t, (i.e., the spread between the 25-year and 3-month yields); ct is the curvature
of the yield curve at time t, (i.e., the difference between the spread between the 25-year and 3-month
yields and the squared 5-year yield); and f̂t is the difference between the 3-month forward rate, three
months hence and the 3-month spot rate on date t. The two yields that define the term spread being
forecast are used to estimate the CIR model. The yields are forecast beginning on 24 March 1994 and
ending on 28 June 2007 (693 weeks). We use a rolling sample with 250 weekly observations to estimate
the model parameters. Statistical significance tests are one-tail (i.e., > 0) for CIR forecasts, and two-tail
(i.e., 6= 0) for all other exogenous variables. The bandwidth is the lag length used in calculating the
Newey-West (1987) autocovariance matrix, obtained using Andrews’ (1991) procedure.



Table IV

Testing Unconditional and Conditional Predictive Ability
for Changes in U.S. Treasury Yields

in Basis Points

Panel A: Forecast of 3-month yield

CIR Model estimated using:

Horizon 3-month & 3-month & 3-month & 3-month & 3-month Aı̈t
(weeks) 3-month 6-month 5-year 15-year 25-year Martingale Forward Sahalia Stanton

1 10.087 10.120 10.153 10.143 10.090 9.799 13.623 13.245
(39.1***) (116.3***) (60.3***) (93.6***) (69.6***) (760.7***) (280.6***)
[37.4***] [44.4***] [55.9***] [79.5***] [149.8***] [3.9] [2002.9***]

4 21.944 22.740 23.055 22.924 22.663 20.567
(75.4***) (88.9***) (78.9***) (84.1***) (78.6***)
[1037.3***] [2758.1***] [2088.3***] [2357.1***] [3674.2***]

13 51.028 53.747 54.391 54.480 53.832 45.953 48.086
(28.3***) (52.4***) (45.6***) (48.4***) (39.2***) (3.3*)
[15728.4***] [16435.9***] [8702.1***] [13845.7***] [18086.3***] [227.6***]

Panel B: Forecast of 6-month yield

Horizon 6-month & 6-month & 6-month & 6-month &
(weeks) 6-month 3-month 5-year 15-year 25-year Martingale

1 9.997 10.135 10.056 10.049 10.043 9.764
(106.8***) (136.7***) (75.4***) (109.0***) (125.5***)
[171.4***] [180.5***] [57.2***] [90.8***] (268.8***)

4 22.452 23.741 23.266 23.199 23.086 21.096
(48.0***) (93.1***) (67.8***) (71.3***) (73.3***)
[1662.0***] [1577.2***] [1728.7***] [2225.2***] [3252.2***]

13 52.048 56.176 54.306 54.806 54.442 47.811
(27.1***) (59.4***) (42.9***) (50.0***) (43.9***)
[26379.8***] [8268.2***] [6314.1***] [15279.9***] [20123.7***]

Panel C: Forecast of 5-year yield

Horizon 5-year 5-year 5-year 5-year
(weeks) 5-year 3-month 6-month 15-year 25-year Martingale

1 13.486 13.973 13.847 13.470 13.483 13.465
(0.9) (83.0***) (109.4***) (0.2) (1.4)
[1.9] [26.1***] [7.5] [0.1] [3.2]

4 27.989 28.663 28.558 27.960 27.998 27.819
(11.4***) (13.8***) (11.1***) (11.6***) (16.8***)
[24.9***] [40.2***] [29.6***] [49.0***] [89.5***]

13 52.804 52.982 52.787 52.702 52.543 51.703
(21.1***) (12.2***) (8.8***) (29.0***) (18.3***)
[669.6***] [396.2***] [292.6***] [585.3***] [588.9***]



Table IV (Continued)
Testing Unconditional and Conditional Predictive Ability

for Changes in U.S. Treasury Yields
in Basis Points

Panel D: Forecast of 15-year yield

CIR Model estimated using:

Horizon 15-year & 15-year & 15-year & 15-year &
(weeks) 15-year 3-month 6-month 5-year 25-year Martingale

1 12.959 13.084 13.000 13.002 12.930 12.910
(24.9***) (12.8***) (4.7**) (2.1) (5.6**)
[24.6***] [12.5**] [4.5] [2.2] [6.0]

4 23.783 24.165 23.989 24.042 23.688 23.601
(24.1***) (25.4***) (16.7***) (19.6***) (7.9***)
[71.4***] [45.4***] [28.9***] [42.7***] [23.7***]

13 41.157 40.802 40.899 40.743 40.638 40.571
(10.5***) (0.6) (1.6) (0.6) (0.2)
[268.0***] [9.5*] [20.3***] [8.4] [3.0]

Panel E: Forecast of 25-year yield

Horizon 25-year & 25-year & 25-year & 25-year &
(weeks) 25-year 3-month 6-month 5-year 15-year Martingale

1 10.581 10.731 10.673 10.626 10.636 10.542
(11.3***) (16.6***) (14.4***) (33.4***) (80.5***)
[8.5] [17.9***] [7.9] [2.2] [2.4]

4 20.724 21.081 20.972 20.889 20.913 20.593
(16.0***) (64.8***) (53.8***) (46.0***) (58.5***)
[33.1***] [194.0***] [131.2***] [140.3***] [200.3***]

13 35.468 35.401 35.099 35.166 35.300 35.203
(3.9**) (4.0**) (0.0) (0.0) (0.7)
[51.3***] [82.5***] [0.1] [0.2] [7.8]



Table IV (Continued)
Testing Unconditional and Conditional Predictive Ability

for Changes in U.S. Treasury Yields
in Basis Points

This table presents the Root Mean Square Error (RMSE) of forecasting zero-coupon yields at
the 1-, 4-, and 13-week horizons using the forward rate, martingale model, Aı̈t Sahalia’s (1996)
model, Stanton’s (1997) model, and both one and two-factor CIR models. The one-factor CIR
model is always estimated using the same yield being forecast. The two-factor CIR model is
estimated in turn by combining the yield being forecast with each of the other four yields in
the sample. The out-of-sample period comprises 693 weeks, beginning 24 March 1994, and
ending on 28 June 2007. We use a rolling estimation design with (constant) sample size of 250
weekly observations to estimate the model parameters. Inference is conducted using the test
of Giacomini and White (2006):

T hm,n = n

(
n−1

T−1∑
t=m

ht∆Lt+τ

)′
Ω̂−1

(
n−1

T−1∑
t=m

ht∆Lt+τ

)

Where: ∆Lt+τ is the difference in the squared error of the two models’ forecasts of the change
in the yield from time t to time t+τ , conditional on the information set at time t. We report
this statistic for two different values of ht: the unconditional test statistic with h

′
t = {1} in

parentheses, and the conditional test statistic with h
′
t =

{
1, lt, st, ct, f̂t

}
in square brackets

below the corresponding RMSE. Where: lt is the level of the yield curve at time t, (i.e., the
3-month yield); st is the slope of the yield curve at time t, (i.e., the spread between the 25-year
and 3-month yields); ct is the curvature of the yield curve at time t, (i.e., the difference between
the spread between the 25-year and 3-month yields and the squared 5-year yield); and f̂t is the
difference between the 3-month forward rate, three months hence and the 3-month spot rate
on date t. The covariance matrix, Ω̂ is the Newey-West (1987) estimator, with the lag length
(or bandwidth) selected using the procedure of Andrews (1991). The null hypothesis is that
the expected difference in the forecast methods from the martingale and the estimated model
is zero, and orthogonal to the state variables in h

′
t.

We indicate statistical significance of the conditional test of this null hypothesis with *, **, and
***, for significance at the 10%, 5%; and 1% levels, respectively. The lowest RMSE forecast
for each yield is in boldface.



Table V

Testing Unconditional and Conditional Predictive Ability
for Changes in U.S. Treasury Yield Spreads

March 1994 through June 2007

Forecast Change in: Forecast Change in: Forecast Change in:
Horizon 6-month Minus 3-month 5-year Minus 3-month 15-year Minus 3-month
(Weeks) CIR Martingale CIR Martingale CIR Martingale
1 8.409 8.414 14.711 13.731 15.429 15.106

(0.1) (118.6***) (29.9***)
[0.1] [78.9***] [46.5***]

4 11.222 11.201 29.932 27.669 31.036*** 29.058
(0.2) (72.8***) (130.0***)
[0.2] [408.5***] [476.6***]

13 15.428 14.782 60.833*** 53.209 64.199 57.399
(9.9***) (57.4***) (58.3***)
[97.8***] [6971.2***] [5360.8***]

Horizon 25-year Minus 3-month 5-year Minus 6-month 15-year Minus 6-month
(Weeks) CIR Martingale CIR Martingale CIR Martingale
1 14.179 13.758 12.735 12.023 13.831 13.594

(48.9***) (146.6***) (9.3***)
[67.0***] [25.5***] [19.9***]

4 29.963 27.894 26.206 23.558 28.147 26.394
(112.3***) (59.5***) (74.8***)
[894.6***] [523.8***] [474.4***]

13 63.434 56.356 52.921 45.939 58.739 53.079
(60.6***) (52.5***) (40.5***)
[11169.4***] [8834.7***] [4495.9***]

Horizon 25-year Minus 6-month 15-year Minus 5-year 25-year Minus 5-year
(Weeks) CIR Martingale CIR Martingale CIR Martingale
1 12.642 12.339 9.862 9.672 9.798 9.669

(48.9***) (5.3**) (19.1***)
[33.2***] [4.9] [16.6***]

4 27.838 25.796 16.317 15.765 18.212 17.841
(109.5***) (12.2***) (70.6***)
[1414.9***] [19.5***] [217.2***]

13 59.793 53.107 27.136 26.222 33.529 32.315
(56.9***) (40.3***) (60.0***)
[22822.4***] [206.5***] [1618.2***]



Table V (Continued)
Testing Unconditional and Conditional Predictive Ability

for Changes in U.S. Treasury Yield Spreads
in Basis Points

March 1994 through June 2007

Forecast Change in:
Horizon 25-year Minus 15-year

(Weeks) CIR Martingale
1 6.992 7.063

(0.4)
[0.6]

4 8.924 9.279
(12.0***)
[20.0***]

13 14.038 14.160
(0.2)
[7.8]

This table presents the Root Mean Square Error (RMSE) of forecasting the spreads between
yield pairs at 1-, 4-, and 13-week horizons using the independent-bivariate martingale model
and the two-factor CIR model. The out-of-sample period comprises 693 weeks, beginning 24
March 1994, and ending on 28 June 2007. We use a rolling design with 250 weekly observations
in estimating the model parameters. Inference is conducted using the test of Giacomini and
White (2006):

T hm,n = n

(
n−1

T−1∑
t=m

ht∆Lt+τ

)′
Ω̂−1

(
n−1

T−1∑
t=m

ht∆Lt+τ

)
Where: ∆Lt+τ is the difference in the squared error of the two models’ forecasts of the change
in the yield spread from time t to time t+τ , conditional on the information set at time t. We
report this statistic for two different values of ht: the unconditional test statistic with h

′
t = {1}

in parentheses, and the conditional test statistic with h
′
t =

{
1, lt, st, ct, f̂t

}
in square brackets

below the corresponding RMSE. Where: lt is the level of the yield curve at time t, (i.e., the
3-month yield); st is the slope of the yield curve at time t, (i.e., the spread between the 25-
year and 3-month yields); ct is the curvature of the yield curve at time t, (i.e., the difference
between the spread between the 25-year and 3-month yields and the squared 5-year yield); and
f̂t is the difference between the 3-month forward rate, three months hence on date t and the
3-month spot rate on date t. The covariance matrix, Ω̂ is the Newey-West (1987) estimator,
with the lag length (or bandwidth) selected using the procedure of Andrews (1991). The null
hypothesis is that the expected difference in the forecast methods from the martingale and the
estimated model is zero, and orthogonal to the state variables in h

′
t.

We indicate statistical significance of the conditional test of this null hypothesis with *, **, and
***, for significance at the 10%, 5%; and 1% levels, respectively. The lowest RMSE forecast
for each yield is in boldface.



Table VI
Decision Rule Assessment

Significant Effects of State Variables on the CIR Forecast
Minus Martingale Squared Errors

Effect of 1 Standard Deviation Increase in:
Forecasted Horizon Model Level Slope Curvature Forward Rate

Variable (Weeks) minus Spot
3-mo yield 1 1F CIR -0.136 -0.138 – 0.074
3-mo yield 4 1F CIR -1.084 -1.122 – 0.925
3-mo yield 13 1F CIR -10.376 – – 7.863
3-mo yield 13 Forward Rate – – – –
6-mo yield 1 1F CIR -0.090 -0.104 – –
6-mo yield 4 1F CIR – – – –
6-mo yield 13 1F CIR – – – 6.313
5-year yield 1 CIR (5-yr, 15-yr) – – – –
5-year yield 4 CIR (5-yr, 15-yr) – – – –
5-year yield 13 CIR (5-yr, 15-yr) – – – –
15-year yield 1 CIR (15-yr, 25-yr) – – – –
15-year yield 4 CIR (15-yr, 25-yr) – – – –
15-year yield 13 CIR (15-yr, 25-yr) – – – –
25-year yield 1 CIR (25-yr, 6-mo) – – – –
25-year yield 4 CIR (25-yr, 6-mo) – – – –
25-year yield 13 CIR (25-yr, 6-mo) – – – –
6-mo - 3-mo spread 1 2F CIR – – – –
6-mo - 3-mo spread 4 2F CIR – – – –
6-mo - 3-mo spread 13 2F CIR – – – –
5-yr - 6-mo spread 1 2F CIR – – – –
5-yr - 6-mo spread 4 2F CIR – – – –
5-yr - 6-mo spread 13 2F CIR – – – –
15-yr - 5-yr spread 1 2F CIR – – – –
15-yr - 5-yr spread 4 2F CIR – – – –
15-yr - 5-yr spread 13 2F CIR -0.736 – – –
25-yr - 15-yr spread 1 2F CIR – – – –
25-yr - 15-yr spread 4 2F CIR – – – –
25-yr - 15-yr spread 13 2F CIR – – – –

This table reports the effects of a one standard deviation increase in a state variable on the difference
in the squared errors between the indicated model and the martingale for statistically significant
cases. That is, we estimate the linear regression:

∆Lt+τ = γ0 + γ1lt + γ2st + γ3ct + γ4f̂t + εt (A.5)

Where: ∆Lt+τ is the difference in the squared error of the two models’ forecasts of the change in
the yield from time t to time t+τ , conditional on the information set at time t; lt is the level of
the yield curve at time t, (i.e., the 3-month yield); st is the slope of the yield curve at time t,
(i.e., the spread between the 25-year and 3-month yields); ct is the curvature of the yield curve
at time t, (i.e., the difference between the spread between the 25-year and 3-month yields and
the squared 5-year yield); and f̂t is the difference between the 3-month forward rate, three
months hence and the 3-month spot rate on date t.
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