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We derive the (exact, discrete-time) joint transition density of returns and volatilities

under Heston’s (1993) stochastic volatility model to identify all model parameters and latent

state variables. We use this derivation to add to the literature in four ways. First, we

examine the effects of discretizing the continuous-time model on inference. Second, we

construct exact predictive densities of the (Black and Scholes) implied volatility smile which

we use for formal model inference. This produces our third contribution– a formal analysis of

whether the documented difficulties of the model fitting the data remain after correcting for

discretization, and the presence of parameter and state variable uncertainty. In particular,

we examine whether the rich and varied patterns shown by implied volatilities in the data

fall within model bounds in the presence of parameter and state variable uncertainty. Our

fourth contribution is an analysis of the effect that different sets of options data have on

estimation and inference. This sensitivity is reflected in practitioners’ practice of estimating

an option pricing model on different subsets of data, in an attempt to use an imperfect model

to capture important features of each subset. While empirical studies have shown that the

Heston model is not flexible enough to capture the patterns of smiles and smirks seen in the

data, and researchers are working with a more general class of models that allows for jumps

in both prices and volatilities, these extensions have not resolved all of the empirical issues

with the simpler model.

Under Heston’s model the evolution of stock returns under the actual probability measure

P is:

dSt = µStdt+
√
vStdz

P
t (1)

dvt = κ(θ − vt)dt+ σ
√
vtdω

P
t

The instantaneous correlation between the two Brownian motions (dzPt and dωPt ) is ρdt.

Appendix A reproduces Heston’s solution to option prices C(S, v, t) in this setting, and

where the volatility risk premium is assumed proportional to the level of volatility (i.e.,

λ · vt).

Normally, since the exact joint transition density is recalcitrant, empirical research resorts

to using Gaussian approximations - time-discretized versions of the stochastic differential
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equations - of the joint transition densities to build likelihood functions.1 Although sam-

pling from time-discretized densities enjoys certain convergence properties under regularity

conditions, it does introduce discretization bias into the parameter estimates. We start by

demonstrating the different behavior of the Euler discretization from the actual continuous-

time transition density. This difference is quite stark, especially in the tails, where the actual

density looks more like the exponential density than its Gaussian (discretized) counterpart.

We use the information in returns and options simultaneously in estimation. It is well

known that the stochastic volatility model used on returns data alone, has improper posteri-

ors unless a proper prior is specified (see for example, Jacquier, Polson, and Rossi (2004), pp.

187-8). Our panel data has a relatively large number of options (15) and a relatively short

time series (five years of weekly data). In this context, with only returns, the behavior of our

likelihood is so poor that the posterior remains elusive unless one is willing to specify a very

informative prior. Instead of doing this, we use options data to sharpen the likelihood. We

use different subsets of options data and explore different weights on these data relative to

the returns data in constructing posterior densities. This allows us to assess how the prop-

erties of the options data affect parameter estimates. Markov Chain Monte Carlo methods

allow us to construct predictive densities of implied volatilities for our panels of options.

Using these predictive densities, we examine the properties of the implied volatility smile

under the model. These densities marginalize the parameter and state variable uncertainty

that remains after using the data to estimate model parameters and state variables using

the continuous-time model.

Structural econometric analysis of option pricing models is made complex since the

model’s absence of arbitrage restriction imposes a stark probabilistic error structure–residuals

are strictly zero. In the context of Heston’s (1993) model, given the parameters and the un-

derlying asset price, on any particular observation date one option is all that is necessary to

span the state space. One way to proceed in light of this stochastic singularity is to use the

number of options equal to the number of unobserved state variables.2 Information extracted

1See, e.g., Eraker, Johannes, and Polson (2003), Jones (2003), and Elerian, Chib and Shephard (2001).
Chib, Pitt, and Shephard (2004) provide an augmentation algorithm for sampling from diffusions.

2If the number of assets is equal to the number of the states, it is possible, at least formally, to solve for
the states exactly. Chen and Scott (1993) and Pearson and Sun (1994) use this method to obtain the exact
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from a subset of options is then compared to another subset of options or the dynamics of

the underlying asset. There are several drawbacks to the approach including the fact that it

neglects potentially useful information in the options not used in the estimation; empirical

comparisons tend to be ad-hoc–not the result of formal statistical inference, and the loss

function used in estimation is often not properly aligned with inference (Christoffersen and

Jacobs 2004). We use an alternative approach, in which the model price is equal to the

observed price plus a measurement error.3

To explore different information in different option data sets, we report results for S&P500

index returns combined with four sets of options data, ranging from 15 options–comprising

three distinct maturities, to a single option. With this panel we find that the variance-

covariance matrix of pricing errors is (virtually) singular. In this case, the model is essentially

unidentified, since all information comes from the option prices–the contribution of the

underlying asset dynamics to the likelihood or posterior vanishes. We deal with this problem

by setting all off-diagonal elements of the matrix to zero. This amounts to imposing a

diagonal prior on this variance-covariance matrix.

We find that the average error in the model Black-Scholes implied standard deviation in

the 15-option case is 1.21%. The average width of the 90%ile predictive posterior bands is

.58%, and the width of the predictive posterior bands on the implied volatilities does not

reflect the model fit. For example, the difference between the model and the data, in the

metric of the implied standard deviation, is most severe in the shorter-term, deepest in-the-

money call options. But the width of the predictive posterior band is average in this case.

The widest predictive posterior band occurs for the deepest in-the-money, short-term option.

These results are consistent with the observation that the risk-neutral density required to fit

observed option prices exhibits more kurtosis than the Heston model can generate.

The significance of the volatility risk premium and its role in fitting volatility smiles are

not clear in the existing literature. For example, Eraker (2004) finds that the premium is

likelihood, Aı̈t-Sahalia and Kimmel (2007) to get an expansion of the likelihood, and Pan (2003) to obtain
implied moments. For a more detailed list of applications see Garcia, Ghysels, and Renault (2003).

3Jacquier and Jarrow (2000) examine various ways to introduce errors into Black and Scholes option
pricing model. For detailed descriptions see Johannes and Polson (2003) and Garcia, Ghysels, and Renault
(2003).
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statistically significant in a stochastic volatility model with correlated jumps in both returns

and volatility yet insignificant in both a pure stochastic volatility model and a stochastic

volatility model with jumps in returns only. Singleton (2006) points out that this difficulty

in estimation may be the result of a limited history of options data and sometimes limited

use of data on far out-of-the-money options. Our use of alternative option information sets

allows us to better understand the role of this risk premium in option pricing.

We find that even though the volatility risk premium is significant across all information

sets, its magnitude is highly sensitive to the information used to estimate the model. Its esti-

mate becomes more precise as we move from fitting a single option to a smile or several smiles

of different maturities. For example, when the information set consists of an intermediate

term at-the-money option the posterior standard deviation of the volatility risk premium is

0.65, with a 5% posterior probability of this parameter being larger than -0.48. However,

adding in-the-money and out-of-the-money intermediate term options to the at-the-money

option lowers the standard deviation to 0.48 and the 5% posterior lower bound to -2.43. Our

results suggest that parameters ρ and σ, affecting the skew and the depth of a smile, alone

are insufficient to fit the model to the data, either under- or overpricing all options at the

same time. The volatility risk premium provides an extra important degree of freedom to

control the vertical location of the smile without changing its depth and skew.

We also find that fitting a smile at one maturity does not fit the smiles at other maturities.

In particular, adding options to the information set that contain information about the

intermediate maturity smile improves the model fit of short maturity in-the-money and

long maturity out-of-the-money options even though these were not part of the estimation

information set. However, in the same case the effect is opposite for short maturity out-

of-the-money and long maturity in-the-money options. These properties result from two

effects. With more options added to the information set posterior band narrows, and more

data points fall outside the band. At the same time, higher kurtosis and more negative skew

(high σ and low ρ)are more faithfully reproduced by the model.

These results suggest that combining options of different maturities may lead to relatively

poor pricing of all options involved in the estimation. For example, using the prior to increase

the pricing error variance on the single option used to estimate the model, only redistributes
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pricing errors across different maturities with no clear overall improvement. In this case, the

improved fit of implied volatilities on short-term and long-term options comes at the expense

of those on intermediate term options.

The remainder of this paper is organized as follows. Section 1 contains a review of the

empirical work done on option pricing models, with emphasis on the recent literature that

estimates jointly the physical and risk-neutral processes from return dynamics and option

prices. Section 2 provides a comparison between the actual transition density of volatility

and its discretized counterpart. Section 3 presents the estimation approach used in this

paper. Section 4 describes the data, which are unique to this study. Section 5 contains

the results, and Section 6 concludes the paper. The relevant technical material is placed

in appendices. Appendix A contains Heston’s (1993) option pricing formula. Appendix B

contains the derivation of the joint density of log prices and volatility, which is new to this

paper. Appendix C shows the conditional densities used in our estimation.

1. Literature Review

The earliest tests of option pricing models are two-stage tests. As an example, Lamoureux

and Lastrapes (1993) use a simple option pricing model (Hull and White 1987) to obtain

stochastic implied volatilities from at-the-money options with a single expiration date. These

are then compared to the realized variances using an encompassing regression. Even though

the model used to price options is a no-arbitrage model, and therefore does not allow for a

natural representation with pricing errors, the predicted variance from the model will have

forecast errors. The model implies that the option-implied variances are the best, unbiased

forecasts of future variance, so that any other information should be orthogonal to this

forecast error. Lamoureux and Lastrapes document that while Black and Scholes implied

volatilities of individual stock, intermediate term options have useful forecasting information,

the forecast errors are not orthogonal to estimated historical variances. They infer from this

that time-varying volatility is priced by the market.

Aı̈t-Sahalia, Wang, and Yared (2001) use non-parametric methods to infer the state price

density implied in a broad panel of three-month options using an empirical Girsanov change

of measure. They also estimate the S&P 500 index diffusion process nonparametrically, and

5



then compare the densities. They conclude that the market does not price options effi-

ciently under the null of a diffusion, and that adding the possibility of jumps (of magnitudes

and numbers not experienced in the sample) is necessary to reconcile option prices to the

underlying asset’s dynamics.

Broadie, Chernov and Johannes (2005) examine options on S&P 500 futures over the

period 1987 – 2003. They model jumps in the index and volatility, and also use a two-step

approach. In fact, they take as given the parameters of the dynamic process estimated in

Eraker, Johannes, and Polson (2003). These parameters are: θ = 0.023, κ = 5.8, σ = 0.35,

and ρ = −0.40. Broadie, Chernov and Johannes find strong evidence in support of jumps in

prices with a jump risk premium of 2 – 5%.

More recently, empirical researchers have developed single-stage estimation and testing

procedures which have advantages in efficiency over two-stage procedures. Most of these

analyses use Heston’s model as a base case. Identification requires information from both

the return series of the underlying asset, which provides a glimpse of the physical measure,

and option prices–determined in the equivalent martingale measure. In these procedures the

option price itself is the focus of estimation, so an error is added to the pricing model. This

error model is ad-hoc in the sense that the option pricing model is completely mute on its

structure (Sims 2003).

Chernov and Ghysels (2000), Pan (2002), and Eraker (2004) all jointly estimate the dy-

namic process in the physical and risk-neutral measures but using different methods. Cher-

nov and Ghysels use Heston’s model to showcase the use of Semi-NonParametrics (SNP)/

Efficient Method of Moments (EMM) (as developed in Gallant and Tauchen (1996, 1998)).

They use closing transaction prices on S&P 500 at-the-money, closest to maturity calls over

the period November 1985 – October 1994. Their approach entails modeling the bivariate

process: index returns and Black-Scholes implied volatilities. They use a SNP density - an

approximation based on Hermite polynomial series expansion - to this end. They compute

model parameters as follows: θ = .014, κ = 0.93, λ = −0.24, ρ = −0.018, and σ = 0.062.4

Pan (2002) develops an implied-state GMM procedure. She obtains implied volatilities

4Here and in what follows all parameter estimates are reported according to parameterizations in equations
(1) and (2), and are annualized. Note that the time scale of σ in (2) is 1

∆t , not 1√
∆t

.
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from near-the-money, short-term options conditional on the model parameters. She uses

weekly data on S&P 500 options over the period January, 1989 through December, 1996.

Her method allows her “to focus directly on the joint dynamics of the state variables rather

than the market observables.” (p. 11) Her parameter estimates are: θ = .0137, κ = 7.1,

λ = −7.6, ρ = −0.53, and σ = 0.32. She notes that the volatility risk premium “implies an

explosive process under the ‘risk-neutral’ measure leading to severely overpriced long-dated

options.” (p. 3) To deal with this problem, Pan adds jumps to the dynamic process (and

uses Bates’ (1996) model of option pricing in the presence of jumps).

Eraker (2004) uses a random set of S&P 500 options from the period January 1987

through December, 1990. He uses a likelihood-based approach similar to that in this paper,

but instead of working with the actual transition densities as we do, he uses a Gaussian

approximation (essentially a Euler discretization).5 Eraker specifies that the residuals from

the option pricing model follow independent Ornstein-Uhlenbeck processes. His parameter

estimates are: θ = 0.049, κ = 4.79, λ = −2.52, ρ = −0.57, and σ = 0.55. Eraker finds that

adding jumps to the Heston pricing model generates virtually no improvement in pricing.6

These three sets of estimates obtained from similar data are disparate. For example, the

half-life of volatility shocks varies from 1.2 months to 1.7 months to 8.9 months. Similarly the

volatility of market volatility varies from 6% to 55%. The steady state standard deviation

of volatility ranges from 0.54% in Chernov and Ghysels to 1% per year in Pan. All of this

suggests that a careful evaluation of the mapping between the model and the estimation

methodology is in order.

2. Continuous vs. Discretized Transition Densities

We avoid discretization by using bivariate inverse Fourier transformation to obtain the

exact solution for the joint transition density of the underlying index and its volatility.

5Broadie and Kaya (2004) show that discretization can induce a very large bias in option pricing when
ν = 2κθ

σ2 − 1 is close to zero, and σ is large relative to θ. In this paper we are more interested in the impact
of discretizing transition density on the parameter estimates.

6Jones (2003) also uses discretization and Gibbs sampling to estimate a stochastic volatility model. He
finds that extensions to Heston’s model cannot accommodate the empirically observed implied volatility
smiles. Jones’ emphasis is on using option prices to develop a more general model of stochastic volatility, as
distinct from testing an option pricing model.
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Normally, it would be computationally infeasible to use a bivariate inverse Fourier transform

in estimation problems. However, we show that due to the affine structure of Heston’s

model it is possible to reduce the bivariate Fourier inversion to univariate inversion using

an integral representation of Bessel functions. This reduction makes numerical computation

of the joint density as tractable as that of Heston’s option value. Thus, our approach

is a deterministic quadrature method that exhibits exponential convergence (Judd (1998))

to arbitrary precision–a result which is independent of the available data frequency. By

contrast, the Euler approximation based on Gaussian densities strongly depends on the time

step (inverse of the data frequency). Broadie and Kaya (2004) show the deterioration in this

method’s reliability for option prices. In estimation, these poor results are aggravated by

the lack of smoothness in the coefficients of the square root volatility process. By avoiding

discretization bias, our approach makes it feasible to use lower frequency data than is required

when the process is discretized. One advantage of this is that the use of lower frequency

data, such as weekly, can mitigate the effects of trading and mechanism related noise that

may perturb market data at higher frequencies.

Our estimation approach involves learning about vt from all of the information in the

sample, including rt, rt−1, and rt+1 along with vt−1 and vt+1, and the entire vector of option

prices at time t. This requires the joint transition density for returns and variance, which

is derived in Appendix B.7 Singleton (2001) shows the general approach of using Fourier

representation or characteristic functions to derive these densities (see too, Revuz and Yor

(1999), Geman and Yor (1993), and Feller (1951)). We show how to reduce the double

integral (in equation 28) to a single integral (equation 39).

Table 1 shows the behavior of the transition density f(ṽt+1|·) in the Euler discretized case

(referred to as Method ED in the table) and in the continuous-time specification (referred

to as Method GF in the table). This example uses the following parameters: µ = 0.08,

θ = 0.029, κ = 2.9, σv = 0.4, ρ = −.5, τ = 7
365

, x0 = ln(500). The table reports properties of

this conditional density including the value of the maximal density function and the value of

7Lamoureux and Witte (2002) also use exact (discrete-time) transition densities from the Feller process
used by Cox, Ingersoll, and Ross (1985) to estimate a term structure model with orthogonal factors. The
estimation approach is the same, but here we work with a bivariate process for returns and volatility.
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ṽt+1 at which this function is maximized (scaled to 1000 at their respective global maxima).

Before turning to the comparison of the two methods, consider some of the properties of this

conditional density. Note that the effect of ρ is important. In the case of a large negative

return, (when Pt+1 is 450), when vt equals its unconditional mean, the median of the density

of ṽt+1 is .056. By contrast, for a positive return of similar magnitude (when Pt+1 is 550),

the analogous median of ṽt+1 is .0213. Similarly, consider the case of 4.9% absolute weekly

return (where Pt+1 is either 475 or 525). If vt is relatively high, at .048, then the median of

the density of ṽt+1 is .0576 for the negative return, and .038 for the positive return. Also

note that in these cases, the conditional density of ṽt+1 is much flatter than in the quiescent

cases. When vt is at its unconditional mean, in the presence of no change in the index value,

the 98%ile range of ṽt+1 is: [.013 .049]. In the case of the large positive return, with vt = .048,

this range is [.016 .059]. These densities often exhibit marked asymmetry. In the case where

Pt+1 equals Pt and vt equals its unconditional mean, the maximum likelihood value of ṽt+1 is

.027, while the median of this density is .028. The 1%ile value is .015 less than the median,

whereas the 99%ile value is .021 greater than the median.

This asymmetry contrasts with the discretized density. In the case where the return is

0, and vt equals its unconditional mean, the discretized density is maximized at this mean

value (.029), and the distribution is symmetric. Nevertheless, in quiescent periods the dis-

cretized density approximates the actual density reasonably. However, this approximation

deteriorates in other settings. When the lagged volatility is small and the return is nonneg-

ative, the discrete density includes negative values in its support. The actual density does

not, but we see that it is also bounded above zero. Consider the case of the positive 4.9%

return, when vt is .025 (slightly below its unconditional mean). The interquartile range of

ṽt+1 is [.009 .031] while under the discrete approximation this is [.003 .028]. Here again the

actual density exhibits marked skewness that is absent from the discrete approximation: the

maximum likelihood value of ṽt+1 is .017, while the median is .018. The Euler approximation

has both at .015. Since stochastic volatility models are designed to deal with leptokurtic

patterns in the data, this degenerate tail behavior of the discretized version may have signif-

icant effects on parameter and volatility estimates, with adverse consequences for estimating

option prices.
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There are two metrics to judge the approximation error of a discretization algorithm: 1)

strong convergence which measures the mean square distance of the generated path from its

exact continuous counterpart, and 2) weak convergence which measures the convergence of

mean values (i.e., convergence in distribution). Kloeden and Platen (1999) show that the

Euler scheme has strong order of convergence 1/2. The convergence property requires among

other things that the drift and diffusion coefficients be Lipschitz-continuous. The square root

volatility process in Heston’s model does not satisfy this requirement. It becomes important

to assess the impact of the breach of this requirement on parameter estimates.

Evidence presented by Broadie and Kaya (2004) concerns mostly the convergence in

distribution properties of the Euler algorithm - the impact of the discretization bias on

expectations like option prices. They find that although Euler method is faster, it becomes

suboptimal when either the precision of the estimates is important or the parameter ν =

2κθ
σ2 − 1 is close to zero. In this paper we are concerned with strong convergence; i.e., the

approximation errors in the transition density and how parameter estimates are affected by

these errors.

3. Estimation

In addition to remaining faithful to the model cast in continuous time, we want to be

sensitive to parameter and state variable uncertainty by integrating over the relevant spaces–

rather than plugging in (consistent) estimators, when evaluating marginal posterior densities.

Of the set of papers reviewed above that pursue joint estimation, we are most like Eraker

(2004), in that we use Markov Chain Monte Carlo (MCMC) methods to integrate over all

unknown spaces in estimation. However, we do not discretize. Since we work with the

exact bivariate transition density for returns and variance, it is not possible to use a Gibbs

sampler (as in Eraker). Instead, we use a Metropolis-Hastings algorithm described below.8

Our approach is also like Aı̈t-Sahalia, Wang, and Yared (2001), in that we want to use a broad

cross-section of options–with different strikes and terms–to learn about model parameters.

Our MCMC approach draws each parameter and state variable in turn from its full

8Chib and Greenberg (1995) is a classic reference on the Metropolis algorithm. See also Robert and
Casella (2004), pp. 267–320.
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conditional density (taking all other parameters and state variables as given). This enables

construction of marginal densities of the parameters and latent state variables, as well as

functions of interest of these objects. These posteriors are integrated over the uncertainty in

this space of parameters and state variables that remains after updating prior beliefs using

all of the information contained in the data. The remainder of this section describes the

MCMC method in more detail. For all analysis here, an improper diffuse prior is used, so

that the posterior densities characterize the likelihood function. All full conditional densities

for parameters and volatilities are described in Appendix C.

3a. Drawing vt

The complexity in this transition density arises because the underlying model is cast in

continuous time while the data are observed at discrete points. In the discrete-time model of

Jacquier, Polson, and Rossi (1994), for example, the full conditional density for the volatility

at time t is the product of three densities: the (univariate) transition densities of volatility

from t − 1 to t, and from t to t + 1; along with the (univariate) conditional density of

the return at time t on contemporaneous volatility. The difference between the continuous

specification here and the discrete-time model comes not from the volatility per se–for which

a discrete-time transition density exists–but from the density of the asset return conditional

on the volatility process. The transition from xt (the log of the price plus accumulated

dividends) to xt+1 depends on the path of volatility over that interval.

The Metropolis algorithm requires a proposal density q(·), from which a candidate pa-

rameter or state variable is drawn. The current (x) and proposed (y) draws are compared:

% = min
{
f(y)
f(x)

q(x|y)
q(y|x) , 1

}
. % is compared to a random uniform (0,1) draw, u, and y replaces x

if % > u. Otherwise, the old draw, x, is kept. In this setting, there are no obvious proposal

densities for v, so we use a Newton-Raphson procedure to maximize the full conditional

density as a function of vt. The resulting “maximum likelihood” estimate of vt then serves

as the mode, and the negative inverse Hessian, the variance of the normal kernel that serves

as the proposal density at this step9. This Newton-Raphson procedure is implemented every

K draws. So that intervening draws use the same proposal density. For all results reported

9The early application of the method is due to Chib and Greenberg (1994). Among more recent papers
using the approach is Elerian et al. (2001).
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here, we set K = 30.

Initial and terminal states are also drawn in each step of the MCMC: v0 is drawn condi-

tional on (the actual) x0, x1, and the on-hand draw from v1; and vT+1 is drawn conditional

on (the actual) xT+1, xT , and the on-hand draw from vT , as described in Appendix C.

3b. Drawing Σ

Conditional on {v}, all other parameters and the data, the residual variance-covariance

matrix has a standard inverse-Wishart form (that follows from the assumption that the

pricing errors are multivariate normal). Thus: Σ−1 ∼ W (T,
∑T

t=1 εtε
′
t). Conditional on model

parameters and the entire vector of state variables ({v}), the εt (a 15-vector in our base

case) are directly observed. In general, draws from this multivariate density are made by

recognizing that the Choleski factorization may be obtained by taking univariate draws from

a χ2 density for the diagonal elements and a univariate normal density for the off-diagonal

elements (see Muirhead (1982), p. 99). We draw Σ using a Gibbs sampling approach.

3c. Drawing µ

The mean parameter, µ is not identified in the equivalent risk-neutral measure, so we learn

about µ (only) from the joint transition density (Appendix C). Again, given the complexity

of this function, we design a Metropolis step to draw µ. For the proposal density, we choose

a Student t distribution with 14 degrees of freedom (i.e., ν = 14). The mean of the proposal

distribution is the mean of the log-returns in the sample (x). The variance is the sample

variance of the realized log-returns (s). This leads to a log-proposal kernel:

q(µ) = −1

2
(ν + 1) · ln

(
1 +

(µ− x)2

ν · s

)
(2)

This proposal kernel is constant over the entire chain.

3d. Drawing θ, ρ, κ, and σ

All of these parameters appear in both the option prices and the joint transition density.

In light of the complexity of these functions we also use the Newton-Raphson algorithm, as

with the v draws, to get the mode and variance of the proposal normal kernels. So each

K draws we obtain the maximum likelihood estimate (i.e., the mode of the posterior) and
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variance, which are used as the mean and variance of a normal proposal density for the next

K draws. (In the analysis below, K is set to 30 for all parameters.)

Well-behaved transition densities require that the following condition always hold: 2κθ
σ2 >

1. We impose this condition, which ensures that volatility is strictly positive, on every draw

of each of these parameters, using an accept-reject method from the proposal density.10

3e. Drawing λ

The parameter λ only appears in the option prices. Even so, the complexity of this density

leads us to use the two step Newton-Raphson algorithm to obtain the first two moments of

the normal proposal kernel. As with the other parameters, the proposal density is updated

every K draws, and in the sequel K is set to 30.

4. Data

We obtain weekly quotes on S&P 500 call options from the Berkeley Options Data Base.

The period is January 3, 1989 through October 6, 1993 (249 weeks). The option price is

defined as the mid-point of the bid-ask spread at 9:00 am CST on every Tuesday in 1989,

Wednesday in 1990, 1992, and 1993, and Thursday in 1991. The sample contains seven op-

tions with a near expiration (of no less than seven days), five options with the second-nearest

expiration, and three options from the third-nearest expiration. The contemporaneous spot

price on the S&P 500 Index is taken from the Berkeley tape for each option.11 On four

dates the most out-of-the-money, closest-to-expiration calls were not updated, following an

opening quote of 0 bid and either 6.25 or 12.5 cents asked at 8:30. In these cases we use the

midpoint of the opening quote.12 These 15 options that comprise our sample are only a small

portion of the S&P 500 complex. For example, on January 17, 1989, the index was around

284. On this date, 71 different call options were quoted. The available expiration months

were: January, February, March, June, September, and December. Strike prices ranged from

175 to 325. Our sample contains February options with strike prices ranging from 270 to 300

10The ability to impose this constraint universally is clearly an advantage of the Bayesian approach.
11This is because the data are irregularly updated. So while 9:00 am is our target time, on a given day we

may have option quotes from 8:58 through 9:02.
12Interestingly, there is trade activity at the quoted ask price throughout the day in these options.
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in $5 increments; March options with strike prices ranging from 275 to 295 in $5 increments;

and June options with strike prices of 280, 285 and 290. SPX options are European-style.

We adjust for the dividend by subtracting the present value of the actual dividends paid

over the option’s remaining life from the index level, for the purposes of option valuation.

Rates on T-Bills whose terms differ by 1 day from each option’s are hand collected from

the Wall Street Journal. The mid-point of the bid and ask discount quotes is used to compute

the yield. Dividend data are obtained from the S&P 500 Daily Dividend Record.

Properties of the sample options are displayed in Table 2. The average term of the

seven short-term options (numbered 1 through 7) is about 22 days, with a minimum of 9

days and a maximum of 39 days. The term of the intermediate options (options 8 through

12) averages 56 days, with minimum of 37 days, and maximum of 129 days. The longest

term options (Options 13 through 15) average 112 days, with a minimum of 65 days, and

maximum of 220 days. The deepest in-the-money option is option 1, where the index level

is on average 5% higher than the strike price. It is clear that options 1 and 15 exhibit the

widest variation in moneyness over the sample. This is because we seek actively traded

options that conform to the monotonicity, and the deep in-the-money calls with short terms

to maturity are illiquid. The same holds for the deep out-of-the-money calls with long terms

to maturity. The sample exhibits the familiar smirk patterns of implied standard deviations

from the Black and Scholes model (isds).13 For all three terms, the average isd increases

monotonically in moneyness. By the same token, the variation in isds over the sample also

increases monotonically in moneyness. Comparing the at-the-money options across terms

(i.e., options 4, 10, and 14), we see a monotonic increase in the implied volatilities in term

from 15.1% to 16.3%. The dispersion in the implied volatilities over this period is also large.

The shortest-term at-the-money option’s implied volatility ranged from a low of 9.1% (on

January 17, 1991–week 107 in the sample) to a high of 29.4% (on February 3, 1993–week

214 in the sample). The dividends paid over the option lifetimes in the sample range from

13Black and Scholes implied volatilities are widely used by traders as a summary measure of an option’s
value. For example, a deep out-of-the-money call with a price of $0.125 may be “expensive” with an implied
volatility of 26%, while a deep in-the-money call with a price of $25 may be “cheap” with an implied volatility
of 15%. The use of these does not mean that we take the Black and Scholes model to be true, or even that
we are using it as a benchmark.
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an average of $0.68 for the shortest term, to $1.84 for the intermediate term, and $3.69 for

the longest term options. Since dividend payments are lumpy, (and the option terms vary

as noted above), there is quite a large variation in dividend payments over the sample.

5. Results

5a. Different sets of Options

As noted in the introduction, with our sample of 249 weekly observations, the likelihood

in the case of returns-only, is very ill-behaved. Very tight priors are needed to keep the

sampler out of regions of joint parameter/{v} space that are degenerate, and absorbing. To

deal with this we add option price data to the returns on the index. In this first section of our

results, we estimate the model using index returns combined with four sets of options data:

1) All 15 options in the sample; 2) Options 8, 10, and 12 (the deepest-in-, at-, and deepest

out-of –the money options with intermediate term; 3) Option 10, with a diffuse prior on Σ;

and 4) Option 10, with a sharp prior that Σ1,1 = 0.2 (note that in these last two cases Σ is

a scalar). This fourth case puts the least information on the option prices, as the imposed

error variance of 0.2 is 7.4 times larger than the mean of the posterior on this parameter from

the single option, diffuse prior case. Our goal is to characterize how the posterior changes

with different sets of options data.

In the cases with more than one option, when we impose a diffuse prior on all parameters,

estimation degenerates in that Σ is virtually singular. Since the prior specifies that Σ must

be positive semi-definite, each Gibbs draw (described in Appendix C) is technically of full

rank, but if we only evaluate the first twelve significant digits, the matrix is singular. Table 3

shows a late draw from Σ from the 15-option case that manifests this problem. The diagonal

elements are (pricing) error standard deviations, expressed in $US, and the off-diagonal

elements are correlations. We see that many of the pairwise correlations are greater than

96%. In general, the highest correlations are between options that expire on the same date.

Since we started with a diffuse prior, one interpretation of these high correlations is that

both moneyness and term affect option prices in manners not captured by the model. This
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is explored below, when we look at the implied volatility smiles in detail.14

A natural solution to this problem is to remove some of the options from the sample.

However, the focus in this paper is extracting information from both options and returns

data so we take a different tack. If the pricing model held, pricing errors at a point in time

would be uncorrelated across the different options. Therefore, we assume that covariance

matrix of 15 option pricing errors is diagonal, that is we specify a diagonal prior on Σ.

This was also done by Schotman (1996) in a study of Dutch bond and bond option prices,

using a (one-factor) Vasicek model. This is an important use of a prior, since a singular

Σ marginalizes the information in the time series of the underlying index. In this case, the

model is not identified. Thus it is clear that this specification of the prior places more weight

on the information on the underlying asset’s return time-series relative to the cross-section

of option prices–facilitating identification.

In all cases, we use 200,000 draws as a burn-in, and then keep the next 100,000 draws.

The Metropolis algorithm either keeps the old value or accepts the proposed value at each

draw. We also monitor acceptance probabilities in an effort to make the algorithm traverse

all regions of the parameter space. Excessively high acceptance rates would imply that the

algorithm moves slowly in parameter space. Low acceptance rates would mean that too

many draws are wasted inefficiently due to poor choice of the proposal. The acceptance

rates for each of the parameters obtained using the Metropolis algorithm average as follows:

θ 60%, κ 58%, σ 49%, ρ 49%, µ 59%, and λ 54%.

Table 4 contains aspects of the posterior density of the six model parameters in the

physical measure, along with the order of the Bessel function plus one
(

2κθ
σ2

)
, and the steady-

state variance of the stock return variance, σ2
ss =

(
σ2θ
2κ

)
, for all four cases. In addition, we

report the equivalent martingale measure parameters κQ = κ+ λ and θQ = κθ
κ+λ

.

The parameter estimates are sensitive to the information set. The constraint that the

order of the Bessel function, (ν = 2κθ
σ2 − 1) be positive is binding in the 15 options case,

and perhaps as well in the 3 options case. It is not binding in the two cases with the single

14These high error correlations could be used to infer that the model does not fit the data. But from a
Bayesian perspective, we know the model is wrong. Our interests include the extent to which it provides a
useful framework for organizing the information in the data.
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option. While κ is centered around 3 in both the 15 Option and the one option–constrained

Σ case, this has a posterior mean of 8.9 from the three option case and 4.0 from one option–

unconstrained Σ case. The dispersion of the posterior on κ is smallest in the 15 option

case.

Our ρ estimate in the 15 option case is smaller than previous results in the literature, but

the value is closer to zero in the other three cases. The unusually low value of ρ in the 15

option case is perhaps the result of strong skew imposed by the short term volatility smile in

the data. The largest value of ρ is seen in the case of one option–unconstrained Σ, where the

mean of the posterior is -.63. Not surprisingly, we see that having more options in the sample

tightens the posterior on λ. In the two single option cases, the 90%ile posterior ranges of λ

are [−2.7 − 0.5] (when Σ is unconstrained), and [−2.6 − 0.4], (in the Σ constrained case).

The two cases with only a single option contain no direct empirical information about the

smile. We see the smallest values of σv in these two cases. Further, σv is smaller when we

use the prior to specify a larger variance on the pricing error. This is consistent with the

tension between the kurtosis in the risk-neutral density implied by the options prices and

that observed in the data. This confirms the intuition that the smile implies leptokurtosis in

the (risk-neutral) density of the underlying asset. Moving from 15 to 3 options, (allowing the

pricing error variance to shrink), the parameters adapt to more faithfully price the options.

In this case σv is therefore larger as there is no longer a constraint imposed by the relative

flatness of the long term smile (options 13,14, and 15). To bring the skewness in line, ρ

is also smaller in absolute value in this case since (following Das and Sundaram (1999)) ρ

has a first order effect on skewness and only a second-order effect on kurtosis. A simple

computation reveals that with λ unchanged at its 15-option case level, the unwanted side

effect of changing σ and ρ, however, would be the downward shift of the entire smile, leading

to underpricing of all intermediate term options. Therefore, λ adjusts downward (from -1.6

to -3.1) to raise the smile and reverse the underpricing.

As noted in the introduction, researchers and practitioners have focused on models’ abili-

ties to fit observed Black-Scholes implied volatility patterns. We are in a position to formally

compare the observed isds with those from the estimated model. For each option in the sam-

ple, we construct a predictive posterior density of the isd, from each of the four cases. We do
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this by defining the option price under the model and then obtaining the isd from that price,

for each of the 100,000 Metropolis draws. These draws on the isds comprise the marginal

predictive density of the isd that integrates over the unknown parameters and that day’s

volatility. Table 5 provides root-mean-square errors (RMSEs), predictive posterior band

widths, and the relationships between the actual isds and these bands for each of the 15

options in the sample for each of the four information sets. So for example, for the at-the-

money, intermediate term option (Option 10), the square-root of the average of the squared

error between the realized isd on week t and the mean of the predictive density of that isd,

(averaged over the 249 weeks in the sample) is 0.333%, when all fifteen options are used in

estimation. In this case, the 90%ile bands have an average width of 0.561%. Of the 249

weeks, in 35 (14%) the actual isd lies above the 90%ile band and in 42 (16%) the actual isd

lies below this band.

Adding options 8 and 12 to the information set (relative to only option 10), places more

emphasis on kurtosis. This puts upward pressure on σv and transfers more weight to the

information in the option data relative to that in returns. In this case we are fitting the smile

represented by these three options. Kurtosis implied by this smile is much higher than that

implied by returns, which leads to a diminished role for the returns data on the estimates.

The standard deviation of price error for option 10 drops from 16.4% to 4% as we add options

8 and 12 to the information set. This drop in the pricing error translates into a decline in

the mean RMSE for option 10’s implied volatility from 0.315% to 0.008%.

By far the best overall fit in Table 5 is for option 10 (the intermediate-term at-the-money

option) in the case where the information set comprises options 8, 10, and 12. In this case,

the fit is almost perfect. The 90%ile posterior band on the implied volatility is 26 basis points

(0.26%) wide, and all 249 volatilities lie within this band. This happens because of the effect

that the data have on λ, seen also in κQ, and σ. When confronted with the information in

the (intermediate-term) smile, σ increases dramatically to match the depth of the empirical

smile. While in-the-money option prices remain essentially unchanged, both at- and out-of-

the-money option prices decline, with the latter prices declining the most. With the negative

ρ this also results in a stronger skew: the increase in kurtosis being largely allocated to the

left tail, the reason for the large decline in out-of-the-money option prices. We see the effect
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that the empirical smile has on λ in the equivalent martingale measure parameters, θQ and

κQ. κQ increases by a factor of 2.5× to accommodate the smile. By contrast, when we add

information from smiles at longer and shorter maturities, λ and κQ revert to their levels

with a single option. So while this model can fit a smile, it cannot fit smiles at various

maturities. An extension that this suggests might be a stochastic volatility risk premium

that is correlated with the return process and is a function of option maturity.

As we look across moneyness categories in Table 5, going from the use of a single option

to 3 options, the RMSEs for at-the-money options that were not used to estimate parameters

and volatilities deteriorate. Both options 4 and 14 RMSEs are larger in the single option

case. At the same time, at the short maturity the RMSEs of the in-the-money options shrink

whereas those of the out-of-the-money options increase, when we add the two intermediate

term options to the information set. For the long maturity, the effect is opposite. Adding

options 8 and 12 increases RMSE of in-the-money option 13 and reduces RMSE of out-of-

the-money option 15.

As can be seen in Table 5, the best fit between the model and the data when all fifteen

options are used in estimation, is for option 11, the closest out-of-the-money, intermediate

term option. The worst fit is the short term, deepest in-the-money call (option 1). The

root-mean-square error over the 249 sample weeks is 3.6%, relative to a 90%ile band width

of 0.57%. Since 193 of the 249 isds lie above the band, there is a clear bias–the model

underprices these options (which are equivalent through put-call-parity to short-term deep

out-of-the-money puts).

5b. The Smile and all 15 options

In this next set of results, we examine the actual smile and the posterior from all of

the information in more detail. Figures 1 through 3 provide a graphical depiction of the

relationship between the actual and model isds for the 15 option case. All of the figures

show the predictive posterior density (90%ile, median and 5%ile), along with the actual isds

for weeks 50, 110, 175, and 222. Weeks 50 and 175 have median isd levels, while week 110 is

high, and week 222 is relatively low. It is clear from Figure 1 that the model generates isds

that decrease in moneyness for the short-term options, but that the model fails to capture
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some features of the data. In week 50, for example, the model fits the deepest in-the-money

option, but overstates the isds of all other six options. Weeks 175 and 222 exhibit a classic

smile pattern that the model does not fit. In both cases, the actual isds for options 2, 4,

and 5 lie within the predictive density bands, but the deepest in-the-money and two most

out-of-the-money options’ isds are higher than the model would predict. In Week 110, which

is characterized by relatively high isds, the entire posterior band lies below the actual isds.

Recall that the at-the-money isd was lowest in week 107, so that Week 110 also follows a rapid

run-up in implied volatilities in these options. The patterns in these three figures suggest

that the model implies that volatility and option prices behave more smoothly than they do

in practice. Turning to the intermediate term options in Figure 2 we see a slightly better

fit (but we also have less extreme moneyness), with only five options. In week 110 there is

a clear lack of monotonicity in the data, that is not in the model, and that transcends the

predictive density bands. Here the at-the-money option (3) lies above the band, as do the

deepest in- and out-of-the money options. Yet, here the fourth option lies below the band.

Week 222 in an example of a data pattern that is non-monotone, but that nevertheless falls

within the predictive density bands. This is the case discussed in the introduction where the

model cannot fit the actual pattern of the data, but the difference between the two is small

enough to attribute to parameter and state variable uncertainty.

Compare Week 50 in Figure 3 to Figure 1. We see that the model understates the isds

for the longest term options (in Figure 3), while generally overstating the isds in this week

for the shortest term options (in Figure 1). In week 110, where the volatilities are relatively

high, the model is able to fit the longest term option’s isd for the at-the-money option, and

again opposite to the short term options, overstates the isds for the in- and out-of-the-money

options. Thus, in general the difference between the smile patterns observed in the data and

those from the model cannot be attributed to parameter and state variable uncertainty.

In general, as discussed in Das and Sundaram (1999), the smiles flatten as the option

maturities lengthen. We now use the information in the full sample to examine the model’s

ability to fit different shaped smile patterns. We start by dividing the 249 weeks in the

sample into quartiles, based on the slope of the smile on the shortest-term options (i.e., the

isd of Option 1 minus the isd of Option 7). The cut-off values for these quartiles are: 3.6%,
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5.3%, and 7.3%. So Group 1 comprises those 62 weeks in the sample with the smallest

difference between the isd of the deepest in-the-money and most out-of-the-money shortest

term options, etc. Table 6 reports the differences in isds between options 2 and 6 (short

term), 8 and 12 (intermediate term), 9 and 11 (intermediate term), and 15 and 13 (longest

term), within each of the quartiles defined above. The table provides the actual values and

posterior properties of each of these differences, averaged over the time period within each

quartile.

By comparing the differences between options 2 and 6, with those of 8 and 12, and

15 and 13, we see that the slope of the smile declines rather dramatically in the options’

terms. An exception to this pattern is the first quartile for the shortest term, relative to

the intermediate term options. Under the model within all four quartiles, the average smile

slope for comparable moneyness pairs, is smaller the longer the options’ terms. However, as

noted by Das and Sundaram (1999), the magnitude of the drop in slopes is much smaller

under the model than observed in the data. Consider the third quartile. Here there are

62 dates when the difference between the isd of the deepest in-the-money and deepest out-

of-the-money, shortest term options falls between 5.3% and 7.3%. The average difference

between option 2’s isd and option 6’s in these cases is 8.6%. Holding moneyness constant

and increasing term by some 30 days we see that the average difference between the isds of

options 8 and 12 falls to 5.9%. Under the model, the 80%ile bands for these two differences

are [4.6% 4.8%] and [4.2% 4.4%]. The model understates both this difference (i.e., the slope

of the smile), and the drop in the slope as term increases (the maximal model drop is 13%,

compared to the actual drop of 38%). In fact, in only one of the 16 cells does the realized

average smile slope lie within the 80% predictive posterior bands from the model (Group 2

– longest term: options 15 and 13). In 13 of the 16 cases, the slope of the smile under the

model is smaller than that observed in the data. This inability to explain the relationship

between moneyness and market price can not be attributed to parameter and state variable

uncertainty, or discretization bias.

Figure 4 looks at the term structure of isds from the three at-the-money options (Options

4, 10, and 14) at the same four dates. We see that in Weeks 50, 175 and 222, where volatilities

are low or average, there is an upward slope under the model–longer term options have higher
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isds. This pattern also manifests in the data; although we see a steeper relationship in Week

50 in the data relative to the model. Week 110 is the case where isds are relatively high. In

the data we see a downward slope with term (consistent with mean reversion), but the model

has a gentle U shape, which as we have already seen is not capable of fitting the relatively

extreme isd of the shortest term option.

6. Conclusions

This paper adds to the growing literature that jointly estimates the model parameters in

both the physical and equivalent martingale measures, by developing an empirical approach

that exploits all the information in a broad cross-section of option prices along with the

dynamics of the underlying asset, using the exact probabilistic framework of the model.

Since finance theory rests heavily on continuous time models, it is compelling to develop an

empirical framework that is fully consistent with this theory–despite the fact that data are

gathered in discrete time. To this end, we derive the necessary joint transition density to

draw from the latent volatility process conditioned on the observed returns and option prices.

While the pricing model that we estimate is generally known to be inadequate in explaining

the cross-section of option prices, and the finance literature is moving on to more complicated

models that include jumps in both the price and volatility of the underlying asset along with

risk premia on these jumps, there remain questions along several dimensions that we answer.

First, no study to date has used all the information in the exact transition densities from the

stochastic volatility (Heston) model. It is possible that the documented performance of the

model is influenced by discretization error. Second, in the context of efficient estimation, how

much of the mispricing may be attributable to parameter and state variable uncertainty?

We also explore the role of using different sets of options in estimating the model. Finally,

our metric for assessing the fit of the model is the implied volatility smile. Our Bayesian

approach affords an exact posterior for this important implication of the model. Using this

metric we assess directly the model’s ability to capture smile patterns empirically, which is

an important criterion in evaluating an option pricing model.

Our results show that with fifteen and even three options, after conditioning on the

model, the variance-covariance matrix of the pricing errors is not of full rank. We address
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this degeneracy of the likelihood function with a prior that off-diagonal elements of the

error variance-covariance matrix are 0. The Bayesian methodology allows a decomposition

of the lack of perfect fit, and it allows us to cast inference in terms of the implied volatility

smile. Part of the difference between the model and the data is due to (the econometrician’s)

lack of knowledge of the parameters and state variables. The other part is attributable to

pricing errors–that under the model would be well behaved. For the deep in-the-money,

short-term call, parameter and state variable uncertainty give rise to a 90%ile band in the

predictive posterior density of the implied volatility of 0.56%. But the data are on average

3.6% away from the predictive posterior density mean. By contrast a slightly in-the-money,

intermediate term option has average pricing errors relative to the posterior mean of 0.26%,

and parameter and state variable uncertainty imply that the predictive posterior density’s

90%ile band width is 0.58%–suggesting an excellent model fit.

Consider “Week 222” in Figure 2 as an example of what might have prevailed more gen-

erally. Here the pattern of Black-Scholes implied volatilities is non-monotone in moneyness,

while the model suggests that these implied volatilities decline in moneyness. The pattern

in the data is different from what we would expect to see under the model. Nevertheless, in

this case parameter and state variable uncertainty alone create wide enough bands around

this pattern to accommodate the data. By contrast, “Week 110” in Figure 1 is a case where

none of the short-term options’ implied volatilities fall within the model’s predictive posterior

bands.

By reviewing the effect that the set of options used to estimate the model has on param-

eter estimates, we see the role played by the volatility risk premium per unit of volatility

(λ). For all of our information sets λ is negative. As the information set changes λ adapts to

shift the smile vertically. For example when we add information about the smile at one term

to a single option λ becomes significantly smaller, but as we add information about smiles

at different terms, λ increases to its estimated level with the single option. This suggests

that the model is rich enough to fit the smile, but lacks the flexibility needed to fit the term

structure of smiles observed in the data.
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Appendix A. Option Prices (Heston 1993).

Assuming that the return generating process is equations (1) and (2) in the text, and

that the risk premium on volatility is proportional to volatility (i.e., λ(·) = λvt), Heston

(1993) shows that the time t value of a European call with strike price X, that expires in

T years, and whose underlying asset is currently worth S (adjusted for the present value of

dividends) with variance v is:

C(S, v, t) = SP1 −Xe−rTP2 (3)

where:

Pj(ln (S), v, T ; ln (X)) =
1

2
+

1

π

∞∫
0

Re

[
e−iφ ln (X)fj(ln (S), v, T ;φ)

iφ

]
dφ (4)

where:

fj(ln (S), v, T ;φ) = eC(T,φ)+D(T ;φ)v+iφ ln (S) (5)

where:

C(T ;φ) = rφiT +
a

σ2

{
(bj − ρσφi+ d)T − 2 ln

[
1− ged·T

1− g

]}
(6)

and

D(T ;φ) =
bj − ρσφi+ d

σ2

[
1− edT

1− gedT

]
(7)

and

g =
bj − ρσφi+ d

bj − ρσφi− d
(8)

and

d =
√

(ρσφi− bj)2 − σ2(2ujφi− σ2) (9)

and: u1 = 1
2
, u2 = −1

2
, a = κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ
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Appendix B. Derivation of the Joint Transition Density

The characteristic function for the process described by (1) and (2) in the text is:

φ(k, γ, τ, xt, vt) = E[eikxt+τ+iγvt+τ |xt, vt] (10)

Where vt is the (latent) variance at time t and xt is the logarithm of the sum of the index

level and accumulated dividends since time t = 0; (so that rt = xt − xt−1).

This must satisfy the following PDE (Øksendal (1998)):

1

2
vt
∂2φ

∂x2
t

+ ρσvt
∂2φ

∂xt∂vt
+

1

2
σ2vt

∂2φ

∂v2
t

+ (µ− 1

2
vt)

∂φ

∂xt
+ κ(θ − vt)

∂φ

∂vt
− ∂φ

∂τ
= 0 (11)

and,

φ(k, γ, 0, xT , vT ) = eikxT+iγvT (12)

Given this affine structure, we look for a solution of the form:

φ = eikxt+A(k,τ,γ)vt+B(k,τ,γ) (13)

with boundary conditions:

A(k, 0, γ) = iγ (14)

B(k, 0, γ) = 0 (15)

In this case, the PDE becomes:

1

2
vt(ik)

2 + ρσvtikA+
1

2
σ2vtA

2 + (µ− 1

2
vt)ik + κ(θ − vt)A− (Ȧvt + Ḃ) = 0 (16)

where, Ȧ = dA
dt
.
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Let:

a =
σ2

2

b = ikρσ − κ

c = −
(
k2

2
+ i

k

2

)
d =

√
(κ− ikρσ)2 + σ2(k2 + ik)

ζ = ikµ

f = κθ

A1 =
1

2a

[
−b+

√
b2 − 4ac

]
=

1

2a
[−b+ d]

A2 =
1

2a

[
−b−

√
b2 − 4ac

]
=

1

2a
[−b− d]

Functions A and B then satisfy the following Riccatti equations:

Ȧ = aA2 + bA+ c (17)

Ḃ = ζ + fA (18)

The solution for A is given by

A =
A2e

d(τ+ξ) − A1

ed(τ+ξ) − 1
(19)

where ξ is the constant of integration.

Let g(γ) = iγ−A1

iγ−A2
, then:

A =
A2e

dτg(γ)− A1

edτg(γ)− 1
(20)

Ḃ = ζ + f
A2g(γ)e

dτ − A1

g(γ)edτ − 1
= ζ + f

[
A2 +

A2 − A1

g(γ)edτ − 1

]
(21)

B = ζ + fA2 −
df/a

g(γ)edτ − 1
. (22)

Implying:

B = ζ + (ζ + fA2)τ −
f

a
ln(e−dτ − g(γ)) (23)

= (ζ + fA2)τ −
f

a
ln

[
e−dτ − g(γ)

1− g(γ)

]
. (24)
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And the boundary conditions:

A(τ = 0) = iγ (25)

B(τ = 0) = 0 (26)

Thus,

φ(k, γ, τ, x, v) = eikx+A(k,τ,γ)v+B(k,τ,γ) (27)

So the joint conditional density transition density is:

G(xt+τ , vt+τ |xt, vt) =
1

4π2

∫ ∫
e−ikxt+τ−iγvt+τφ(k, γ, τ, xt, vt) dk dγ (28)

Our objective is to use the special form of the diffusion to obtain a “closed-form” solution

to one of these integrals. To this end we re-write the double integral as follows:∫ {
1

2π
eik(xt+τ−xt)

∫ {
1

2π
e−iγvt+τ+A+Bvt

}
dγ

}
dk (29)

and collect the terms containing γ:

e−iγvt+τ e
A2g(γ)e

dτ−A1
edτ γ−1

vt+(ζ+fA2)τ− f
a
ln

»
e−dτ−g(γ)

1−g(γ)

–
(30)

= e−iγvt+τ e
A2g(γ)e

dτ−A1
edτ γ−1

vt+(ikµ+κθA2)τ−(ν+1)ln[
e−dτ−g(γ)

1−g(γ) ]
(31)

∝ e−iγvt+τ
(
e−dτ − g(γ)

1− g(γ)

)ν+1

e
A2g(γ)e

dτ−A1
edτ g(γ)−1

vt
. (32)

Where, ν = 2κθ
σ2 − 1.

Further simplifying:

1

g(γ)edτ − 1
=

1
iγ−A1

iγ−A2
edτ − 1

=
iγ − A2

iγ(edτ − 1)− A1edτ + A2

(33)

And with some tedious algebra, we find:

e−dτ − g(γ)

1− g(γ)
=
A1 − A2e

−dτ

d/a
+
e−dτ − 1

d/a
iγ (34)

and:

1

g(γ)edτ − 1
=

1

edτ − 1
+

(ψ + d
a
) 1
edτ−1

iγ − A1 − ψ
(35)
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Where ψ = d
a(edτ−1)

.

So the integral over terms involving γ becomes:

e(fA2+ζ)τ− f
a
ln( e

−dτ
ψ

)+[A2−ψ]vt

∫ {
1

2π
e
−iγvt+τ− f

a
ln[ψedτ+A2−iγ]− ϕvt

iγ−ψ−A1

}
dγ. (36)

where ϕ =
(
d
a

+ ψ
)
ψ = ψ2edτ .

Using a change of variable and defining λ = Re[ψ + A1], we can rewrite the integral in

the last expression as:

λ+i∞∫
λ−i∞

{
1

2πi
eiγ̃vt+τ e−(ψ+A1)vt+τ e−

f
a
lniγ̃+

ϕvt
iγ̃

}
dγ̃ (37)

This exists analytically:

e−(ψ+A1)vt+τ

(
vt+τ
ϕvt

) ν
2

Iν [2
√
ϕvtvt+τ ] . (38)

where Iν [ · ] is the modified Bessel function of order ν.

Thus the joint density may be written as follows:

G(xt+τ , vt+τ |xt, vt) =
1

2π

(
vt+τ
vt

)ν/2
+∞∫

−∞

dk ψ ef(k)Iν [2
√
ϕvtvt+τ ] (39)

where

f(k) = −ik(xt+τ − xt − µτ) +
ν + 1

2
(κ− ikρσ)τ +

τd

2
+ (A2 − ψ)vt − (A1 + ψ)vt+τ

Appendix C. Full Conditional Densities

From Appendix B, we see that:

f(vt | xt+τ , xt, vt+τ , vt−τ ,θ) ∝ G(xt+τ , vt+τ | xt, vt,θ) ·G(xt, vt | xt−τ , vt−τ ,θ) · L(Ct | vt,θ,Υ)(40)

G( ) is the function of Equation 33 in Appendix B. Ct is the 15-vector of call prices

observed at time t. Υ is the (15 × 4) matrix containing the underlying S & P 500 value,
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time-to-maturity, interest rate, and dividends corresponding to each element in Ct. θ is the

vector of model parameters and state variables: {θ, κ, σ, ρ, λ, µ, {v}}.

L is the portion of the likelihood from the option pricing model:

Lt(Ct | vt,θ,Υ) ∝ |Σ|−.5e−.5(C−Ct)′Σ−1((C−Ct) (41)

Ct is the model value for the call price, as a function of the model parameters and vt, as

shown in Appendix B.

As described in the text, we also integrate over v0 and vT+1 by drawing them as follows:

f(v0|v1, ·) ∝ G(x1, v1|x0, v0) (42)

where x1, v1, and x0 are fixed.

And:

f(vT+1|vT , ·) ∝ G(xT+1, vT+1|xT , vT ) (43)

where xT , vT , and xT+1 are fixed.

Similarly, the full conditional density for θ is proportional to:

f(θ|·) ∝
T+1∏
t=1

G(xt, vt|xt−1, vt−1)Lt (44)

where all parameters and state variables other than θ are considered fixed, and this expression

is a kernel for θ.

The full conditional densities for κ, ρ, and σ are identical in structure.
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Garcia, René, Eric Ghysels and Eric Renault, 2003, The Econometrics of Option Pricing, forth-

coming in Y. Ait-Sahalia and L.P. Hansen (eds.), The Handbook of Financial Econometrics.

31
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Table 1
Properties of the Joint Density if vt+1: Continuous and Discrete Cases

Case 1%ile 5%ile 25%ile Median 75%ile 95%ile 99%ile Maximum ṽt+1

Pt+1 vt Method CDF (kernel) at max
450 0.01 GF .0274 .0305 .0363 .0408 .0455 .0516 .0540 0.4E-3 .0403
450 0.01 ED .0206 .0239 .0286 .0318 .0350 .0397 .0429 0.3E-11 .0318
450 0.015 GF .0287 .0325 .0389 .0435 .0481 .0530 .0544 .004 .0437
450 0.015 ED .0229 .0269 .0326 .0366 .0406 .0463 .0503 0.4E-7 .0366
450 0.025 GF .0335 .0385 .0464 .0523 .0586 .0684 .0757 0.06 .0514
450 0.025 ED .0286 .0338 .0411 .0462 .0513 .0587 .0639 0.009 .0462
450 0.029 GF .0358 .0410 .0493 .0555 .0622 .0724 .0801 0.1 .0546
450 0.029 ED .0311 .0366 .0446 .0501 .0556 .0635 .0691 0.003 .0501
450 0.033 GF .0382 .0437 .0524 .0588 .0657 .0764 .0844 0.2 .0579
450 0.033 ED .0336 .0396 .0480 .0539 .0598 .0682 .0742 0.2 .0539
450 0.43 GF .0445 .0507 .0602 .0673 .0749 .0866 .0953 0.6 .0664
450 0.43 ED .0404 .0472 .0568 .0635 .0702 .0799 .0867 1.2 .0635
450 0.48 GF .0478 .0543 .0642 .0717 .0795 .0917 .1007 0.9 .0707
450 0.48 ED .0439 .0511 .0612 .0683 .0754 .0856 .0928 2.4 .0683

475 0.01 GF .0125 .0156 .0205 .0244 .0286 .0355 .0408 4.6 .0236
475 0.01 ED .0099 .0131 .0178 .0210 .0242 .0289 .0321 1.0 .0210
475 0.015 GF .0149 .0184 .0240 .0284 .0332 .0408 .0467 92 .0275
475 0.015 ED .0121 .0161 .0218 .0258 .0298 .0355 .0395 10 .0258
475 0.025 GF .0204 .0247 .0316 .0369 .0426 .0516 .0585 25 .0359
475 0.025 ED .0178 .0229 .0303 .0354 .0405 .0479 .0531 64 .0354
475 0.029 GF .0229 .0275 .0348 .0404 .0465 .0560 .0632 30 .0394
475 0.029 ED .0202 .0258 .0338 .0393 .0448 .0527 .0583 94 .0393
475 0.033 GF .0254 .0303 .0380 .0440 .0504 .0603 .0679 34 .0430
475 0.033 ED .0228 .0288 .0372 .0431 .0490 .0574 .0634 125 .0431
475 0.043 GF .0320 .0376 .0464 .0530 .0601 .0712 .0796 42 .0520
475 0.043 ED .0296 .0364 .0460 .0527 .0594 .0655 .0759 203 .0527
475 0.048 GF .0355 .0414 .0506 .0576 .0650 .0766 .0853 44 .0566
475 0.048 ED .0331 .0402 .0504 .0575 .0646 .0748 .0820 240 .0575

500 0.01 GF .0023 .0040 .0074 .0102 .0136 .0194 .0241 1000 .0091
500 0.01 ED -.0004 .0028 .0075 .0107 .0140 .0186 .0219 1000 .0107
500 0.015 GF .0047 .0071 .0114 .0150 .0190 .0258 .0311 674 .0138
500 0.015 ED .0019 .0059 .0116 .0155 .0195 .0252 .0292 1000 .0155
500 0.025 GF .0104 .0139 .0197 .0244 .0296 .0379 .0444 408 .0233
500 0.025 ED .0075 .0127 .0200 .0252 .0303 .0376 .0428 1000 .0252
500 0.029 GF .0128 .0167 .0231 .0282 .0337 .0426 .0494 352 .0270
500 0.029 ED .0100 .0156 .0235 .0290 .0345 .0424 .0480 1000 .0290
500 0.033 GF .0154 .0196 .0265 .0319 .0378 .0472 .0544 310 .0308
500 0.033 ED .0126 .0185 .0270 .0328 .0387 .0472 .0531 1000 .0328
500 0.043 GF .0221 .0271 .0352 .0414 .0481 .0586 .0666 238 .0402
500 0.043 ED .0193 .0261 .0358 .0425 .0492 .0588 .0656 1000 .0425
500 0.048 GF .0256 .0310 .0395 .0461 .0531 .0642 .0726 214 .0450
500 0.048 ED .0228 .0300 .0402 .0473 .0544 .0646 .0717 1000 .0473



Table 1 (Cont’d.)
Properties of the Joint Density of vt+1: Continuous and Discrete Cases

Case 1%ile 5%ile 25%ile Median 75%ile 95%ile 9 9%ile Maximum ṽt+1

Pt+1 vt Method CDF (kernel) at max
525 0.01 GF .0018 .0032 .0061 .0086 .0117 .0171 .0216 1 .0075
525 0.01 ED -.0102 -.0069 -.0023 .0010 .0042 .0089 .0121 2 .0010
525 0.015 GF .0025 .0043 .0079 .0110 .0147 .0184 .0260 8 .0097
525 0.015 ED -.0079 -.0039 .0018 .0058 .0097 .0154 .0194 16 .0058
525 0.025 GF .0059 .0087 .0138 .0180 .0228 .0306 .0368 35 .0168
525 0.025 ED -.0022 .0029 .0103 .0154 .0205 .0279 .0330 84 .0154
525 0.029 GF .0078 .0110 .0167 .0213 .0264 .0348 .0414 44 .0200
525 0.029 ED .0002 .0058 .0137 .0192 .0248 .0327 .0382 118 .0192
525 0.033 GF .0099 .0135 .0197 .0247 .0302 .0391 .0460 51 .0235
525 0.033 ED .0028 .0088 .0172 .0231 .0290 .0374 .0434 152 .0231
525 0.043 GF .0158 .0203 .0277 .0335 .0399 .0500 .0577 63 .0323
525 0.043 ED .0096 .0163 .0260 .0327 .0394 .0491 .0558 236 .0327
525 0.048 GF .0190 .0239 .0319 .0380 .0448 .0554 .0635 65 .0369
525 0.048 ED .0131 .0202 .0304 .0375 .0446 .0548 .0620 274 .0375

550 0.025 GF .0072 .0100 .0151 .0192 .0239 .0315 .0375 0.005 .0185
550 0.025 ED -.0116 -.0064 .0010 .0061 .0112 .0186 .0237 0.08 .0061
550 0.029 GF .0082 .0114 .0168 .0213 .0263 .0344 .0407 0.02 .0205
550 0.029 ED -.0091 -.0035 .0044 .0099 .0154 .0234 .0289 0.3 .0099
550 0.033 GF .0095 .0129 .0188 .0236 .0289 .0376 .0443 0.07 .0225
550 0.033 ED -.0065 -.0005 .0079 .0138 .0197 .0281 .0341 0.8 .0138
550 0.043 GF .0137 .0179 .0249 .0305 .0366 .0464 .0539 0.5 .0291
550 0.043 ED .0003 .0070 .0167 .0234 .0301 .0398 .0465 4 .0234
550 0.048 GF .0162 .0208 .0284 .0343 .0408 .0511 .0590 0.9 .0329
550 0.048 ED .0038 .0109 .0211 .0282 .0353 .0455 .0527 7 .0010
550 0.055 GF .0201 .0252 .0335 .0399 .0469 .0579 .0663 2 .0387
550 0.055 ED .0088 .0164 .0274 .0349 .0425 .0534 .0611 13 .0349

This table reports properties of the cumulative density function for f(xt+1, ṽt+1|xt, vt), where
xt is ln(Pt), the level of the index at t; and vt is the variance at t. For the continuous case, we
use the joint transition density derived in Appendix B to construct this cdf of vt+1 treating
everything else as fixed. Model parameters and x0 are fixed as: θ = 0.029; κ = 2.9; σv =
0.4; ρ = −0.5; µ = 0.08; δt = 7

365
; xt = 500.
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Table 4
Parameter Posteriors

The Case of the Diagonal Prior on Σ

5%ile 10%ile 25%ile Median Mean 75%ile 90%ile 95%ile std dev
θ 0.02066 0.02140 0.02264 0.02406 0.02560 0.02748 0.03285 0.03570 0.00435

0.01897 0.01913 0.02036 0.02116 0.02142 0.02288 0.02363 0.02418 0.00170
0.02162 0.02242 0.02396 0.02623 0.02720 0.02907 0.03345 0.03800 0.00479
0.02207 0.02325 0.02546 0.02873 0.03026 0.03302 0.03966 0.04442 0.00706

κ 2.10410 2.29043 2.68075 3.04738 2.96295 3.28177 3.45603 3.54074 0.42944
7.66094 7.85339 8.26764 8.83700 8.85198 9.49245 9.97753 10.22713 0.78730
2.75098 2.99221 3.44661 3.95766 3.97479 4.50110 4.99666 5.27599 0.75976
1.69677 1.94194 2.45173 3.01576 3.00426 3.54569 4.01976 4.29683 0.78589

σ 0.37432 0.37625 0.37974 0.38373 0.38372 0.38772 0.39108 0.39301 0.00574
0.58292 0.58828 0.59668 0.60623 0.60526 0.61378 0.62092 0.62541 0.01324
0.23993 0.24792 0.26187 0.27819 0.27939 0.29632 0.31246 0.32207 0.02493
0.20879 0.21490 0.22609 0.23907 0.23996 0.25292 0.26582 0.27376 0.01973

ρ -.83828 -.83542 -.83018 -.82395 -.82370 -.81751 -.81149 -.80807 0.00923
-.73824 -.73280 -.72465 -.71603 -.71621 -.70748 -.69995 -.69557 0.01281
-.70793 -.69090 -.66214 -.62873 -.62637 -.59234 -.55837 -.53752 0.05173
-.77234 -.75925 -.73570 -.70736 -.70504 -.67689 -.64796 -.62936 0.04362

µ 0.01930 0.03533 0.06049 0.08856 0.08823 0.11661 0.14096 0.15538 0.04135
0.00829 0.02424 0.04950 0.08106 0.08199 0.11294 0.14178 0.15928 0.04602
-.06270 -.04256 -.00929 0.02706 0.02758 0.06408 0.09843 0.11875 0.05477
-.08268 -.06464 -.03101 0.00542 0.00607 0.04305 0.07724 0.09795 0.05514

λ -2.15833 -2.05146 -1.88028 -1.67915 -1.57039 -1.29557 -0.86447 -0.67738 0.43126
-3.92075 -3.80632 -3.53460 -3.07968 -3.12956 -2.70709 -2.50710 -2.42943 0.48441
-2.71110 -2.54418 -2.20669 -1.77546 -1.74339 -1.36207 -0.86652 -0.48342 0.65195
-2.55340 -2.32622 -1.96081 -1.52020 -1.49999 -1.07949 -0.62361 -0.34791 0.66223

2κθ
σ2 1.00030 1.00061 1.00163 1.00383 1.00540 1.00756 1.01233 1.01577 0.00519

1.00150 1.00302 1.00886 1.02131 1.02853 1.04142 1.06449 1.08189 0.02577
2.23761 2.33026 2.49210 2.69817 2.71979 2.92557 3.13757 3.27122 0.31880
2.41452 2.54420 2.75706 3.00126 3.01338 3.25619 3.49995 3.65662 0.37801

ss var 0.02349 0.02440 0.02598 0.02788 0.03001 0.03246 0.03986 0.04396 0.00597
0.01931 0.01966 0.02062 0.02188 0.02206 0.02357 0.02462 0.02517 0.00186
0.00990 0.01046 0.01155 0.01301 0.01380 0.01510 0.01793 0.02128 0.00342
0.00979 0.01054 0.01202 0.01430 0.01601 0.01791 0.02365 0.02824 0.00621

θQ 0.05074 0.05127 0.05215 0.05316 0.05324 0.05427 0.05532 0.05594 0.00158
0.02976 0.03038 0.03140 0.03293 0.03308 0.03445 0.03600 0.03694 0.00226
0.04012 0.04148 0.04402 0.04736 0.04879 0.05168 0.05725 0.06209 0.00965
0.04441 0.04661 0.05102 0.05779 0.06505 0.06847 0.08565 0.10376 0.34734

κQ 1.27319 1.29857 1.34263 1.39168 1.39256 1.44171 1.48745 1.51391 0.07324
4.98179 5.15569 5.39915 5.72495 5.72241 6.08157 6.29777 6.40671 0.45523
1.39072 1.57203 1.88810 2.23327 2.23140 2.57370 2.87411 3.06235 0.51449
0.61834 0.80745 1.13104 1.50297 1.50427 1.86909 2.20253 2.39421 0.54351



Table 4
Parameter Posteriors

The Case of the Diagonal Prior on Σ (Cont’d.)

Notes: This table reports aspects of the posterior densities of the model parameters and
functions of interest. The model is estimated using weekly data from 1989 through October
1993, on four different data sets and the underlying asset (S&P 500 index).
The four information sets are: 1) all 15 options; 2) Options 8, 10, and 12; 3) Option 10; and
4) Option 10, with Σ(1,1) fixed at 0.2.

The model we consider for the evolution of stock returns is:

dS = µSdt+
√
vSdz

dv = κ(θ − v)dt+ σ
√
vdω

The model for option prices is: P (t,X, T ) = C(t,X, T, ·) + ε.
ε ∼ N(0,Σ).

As explained in the text, identification is achieved by placing a diagonal prior on Σ.



Table 5
The relationship between the actual ISDs and the Predictive Densities

Root-Mean Sq. Root-Mean Sq. Average # Sample # Sample
Option Error - Mean Error - Median 90%ile band Below band Above band

1 3.599 3.599 0.568 39 193
6.547 7.137 0.773 54 164
7.681 7.678 1.786 8 208
6.569 5.790 2.162 8 206

2 2.171 2.171 0.582 48 166
2.071 2.071 0.590 73 138
2.817 2.812 1.823 10 179
2.955 2.953 2.016 9 170

3 1.208 1.209 0.600 85 106
1.567 1.567 0.606 104 105
1.648 1.644 1.860 22 113
1.762 1.761 2.057 19 106

4 0.985 0.985 0.624 123 56
1.645 1.645 0.629 114 87
1.267 1.264 1.904 36 52
1.320 1.319 2.106 32 49

5 1.129 1.129 0.655 112 60
1.935 1.935 0.655 95 116
1.474 1.473 1.952 59 32
1.462 1.461 2.163 55 33

6 1.408 1.407 0.690 80 100
2.247 2.247 0.668 78 142
1.782 1.782 1.997 74 38
1.737 1.737 2.222 65 35

7 2.252 2.247 0.743 61 155
2.643 2.635 0.718 60 166
2.108 2.105 2.050 68 64
2.267 2.348 2.328 65 61

8 0.987 0.987 0.532 42 135
0.791 0.793 0.261 62 141
1.280 1.277 1.538 2 146
1.391 1.392 1.756 2 132

9 0.632 0.632 0.545 41 94
0.505 0.506 0.261 75 109
0.753 0.749 1.555 0 70
0.897 0.898 1.779 2 63

10 0.333 0.333 0.561 35 42
0.014 0.008 0.265 0 0
0.326 0.315 1.578 2 3
0.563 0.564 1.806 7 11



Table 5 (Cont’d.)
The relationship between the actual ISDs and the Predictive Densities

Root-Mean Sq. Root-Mean Sq. Average # Sample # Sample
Option Error - Mean Error - Median 90%ile band Below band Above band

11 0.259 0.258 0.581 44 16
0.429 0.431 0.274 91 84
0.599 0.595 1.605 34 0
0.704 0.705 1.840 36 3

12 0.538 0.538 0.603 65 79
0.707 0.709 0.290 87 117
0.947 0.946 1.637 83 2
0.985 0.986 1.878 70 5

13 0.991 0.991 0.479 98 92
1.257 1.257 0.544 102 98
1.007 1.008 1.369 54 46
1.007 1.006 1.625 51 34

14 0.837 0.837 0.489 99 79
1.119 1.120 0.534 104 93
0.952 0.952 1.380 83 24
0.982 0.981 1.642 79 16

15 0.714 0.714 0.501 89 73
0.986 0.987 0.535 100 86
1.014 1.011 1.463 119 9
1.052 1.050 1.666 103 7

Notes: This table reports aspects of the posterior densities of the model parameters and
functions of interest. The model is estimated using weekly data from 1989 through October
1993, on four different sets of options and the underlying asset (S&P 500 index). The fours
sets are: 1) All 15 options; 2) Options 8, 10, and 12; 3) Option 10; 4) Option 10, with
Σ(1,1) = 0.2.
The option characteristics are presented in Table 2.
The model we consider for the evolution of stock returns is:

dS = µSdt+
√
vSdz

dv = κ(θ − v)dt+ σ
√
vdω

The model for option prices is: P (t,X, T ) = C(t, vt, X, T, ·) + ε.
ε ∼ N(0,Σ). C is Heston’s(1993) model of option pricing with stochastic volatility

As explained in the text, identification is achieved by placing a diagonal prior on Σ.
The posterior density of the implied standard deviation is constructed using the 100,000
Gibbs draws for each of the 249 dates in the sample. The percentile bands are constructed
using the actual option constructed using the 100,000 Gibbs draws for each of the 249 dates
in the sample. The percentile bands are constructed using the actual option characteristics
along with the Gibbs draws on the volatility and parameters for each date. The variance-
covariance matrix (Σ) is not used in this context. The “# Above band” shows the number
of the 249 days in the sample when the actual isd was above the 90%ile posterior band on
that date.



Table 6
The Slope of the Smile and Term

Smile Option 2 Option 8 Option 9 Option 15
Measure: Option 6 Option 12 Option 11 Option 13

Actual Data
Group 1 0.022069792 0.023097934 0.012363836 0.010716495
Group 2 0.076942917 0.058587693 0.030519542 0.026160277
Group 3 0.085942970 0.059424316 0.030333107 0.023473363
Group 4 0.064307309 0.040146356 0.020320922 0.014571154

Posterior
Function
Group 1

Mean 0.0282427 0.0252901 0.0125905 0.0114205
Std. Dev. 0.0004271 0.0003214 0.0001555 0.0001195

10%ile 0.0276885 0.0248738 0.0123890 0.0112647
Median 0.0282464 0.0252950 0.0125926 0.0114230
90%ile 0.0287883 0.0257015 0.0127895 0.0115730

Group 2
Mean 0.0594924 0.0530041 0.0265577 0.0264453

Std. Dev. 0.0008726 0.0006527 0.0003172 0.0002752
10%ile 0.0583654 0.0521603 0.0261470 0.0260878
Median 0.0594991 0.0530125 0.0265619 0.0264502
90%ile 0.0606057 0.0538358 0.0269615 0.0267967

Group 3
Mean 0.0474226 0.0431046 0.0215845 0.0215052

Std. Dev. 0.0006942 0.0005415 0.0002650 0.0002242
10%ile 0.0465256 0.0424041 0.0212416 0.0212141
Median 0.0474276 0.0431124 0.0215885 0.0215090
90%ile 0.0483077 0.0437959 0.0219220 0.0217911

Group 4
Mean 0.0248525 0.0231032 0.0115523 0.0110299

Std. Dev. 0.0003609 0.0002993 0.0001471 0.0001171
10%ile 0.0243868 0.0227165 0.0113622 0.0108778
Median 0.0248557 0.0231070 0.0115541 0.0110318
90%ile 0.0253133 0.0234852 0.0117400 0.0111792

Notes: This table reports the average slope of the implied volatility smile for different option
groups. The 249 observations are sorted into four groups based on the short-term isd slope
(i.e., the difference between the actual isd on Option 1–the shortest term, deepest in-the-
money option, and Option 7–the shortest term, deepest out-of-the-money option). The
model is estimated using the panel of 15 options.
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