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ABSTRACT

This paper uses recent advances in Bayesian estimation methods to exploit fully and
efficiently the time-series and cross-sectional empirical restrictions of the Cox, In-
gersoll, and Ross model of the term structure. We examine the extent to which the
cross-sectional data ~five different instruments! provide information about the model.
We find that the time-series restrictions of the two-factor model are generally con-
sistent with the data. However, the model’s cross-sectional restrictions are not. We
show that adding a third factor produces a significant statistical improvement, but
causes the average time-series fit to the yields themselves to deteriorate.

THE SEMINAL TERM STRUCTURE MODEL of Cox, Ingersoll, and Ross ~1985; CIR!
has spawned numerous empirical investigations and theoretical generaliza-
tions. The model imposes restrictions on the cross-sectional and time-series
properties of the yield curve. Although the model is cast in continuous time,
the discrete-time transition densities of the state variables are known. This
paper demonstrates how to estimate the model and integrate over the ~la-
tent! state variables using the appropriate transition density. In so doing,
we allow all of the data to provide information about the state variables, and
we take full advantage of the parametric implications of a continuous-time
model for discretely sampled data. We approach the estimation problem as
econometricians viewing data generated by a CIR world with noise. We im-
plement a likelihood-based approach that does not concentrate the latent
process into the likelihood. Under our approach, the conditional likelihood
and the exact transition density of the latent state process—conditioned on
the data—enable us to derive formal density functions of model parameters
and ~possibly complicated! functions of the parameters and state variables.
By not identifying the state variables with specific yields in the sample, we
are able to isolate the model’s time-series implications from its cross-
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sectional implications. We can look at aspects of the term structure that are
considered important and evaluate the performance of the model along these
dimensions. For example, we find that ~contrary to much published work!
the two-factor CIR model does a very good job of fitting the time-series prop-
erties of short rates. It also does well at characterizing aspects of the time
series of long rates. The biggest tension between the estimated CIR models
and the data appears to be that long rates are too variable to be consistent
with the model and the observed behavior of short rates. That is, it is the
cross-sectional restrictions of the model ~as opposed to its time-series prop-
erties! that stand at odds with the data.

As noted, we can construct the exact marginal density of any function of
the model’s parameters and state variables. This enables us to move model
evaluation beyond a simple analysis of parameter values and portmanteau
statistics, to a more general evaluation of how well the model conditioned on
the data can characterize functions that traders and market analysts may
be interested in. Such functions include bond prices and interest rate deriv-
ative prices, as well as functions of the parameters and state variables that
govern the dynamics and cross-sectional properties of these prices. Profes-
sional traders are typically hesitant to use standard economic models of pric-
ing because these models do not fit the yield curve exactly. Since the models
start with primitives about endowments, preferences, and production func-
tions, it is not surprising that they cannot fit any data exactly. Equilibrium0
arbitrage models of the term structure such as CIR do not provide adequate
degrees of freedom to afford an exact fit to a panel of yield data with more
instruments than factors. However, the model is internally consistent and
characterizes an economy in equilibrium with no arbitrage opportunities. If
it were to characterize broad patterns in fixed income markets, it would
yield fundamental insights into the sources and pricing of risk and show
how derivatives should be priced.

While there have been many attempts to bring dynamic term structure
models to data, little is known about the ability of these models to fit the
data along dimensions that are important to traders. Most of the empirical
literature compares models with different numbers of factors or alternative
factor specifications using likelihood ratio or chi-squared portmanteau tests.
These tests provide no indication as to the usefulness of the models in prac-
tice or the precision of the estimates when used to identify functions of the
term structure model, such as interest rate derivatives. We provide an ex-
ample of the extent to which the likelihood metric can be misleading. The
three-factor model has a significantly higher marginalized likelihood value
than the two-factor model and fits the cross-sectional functions of the yield
curve better than the two-factor model. However, the two-factor model is
better than the three-factor model in fitting the average yields in the sample.

In the two-factor model, we find that in levels the two factors are highly
correlated with the short rate and the slope of the yield curve, respectively.
However, when we look at log differences, the correlations between the fac-
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tors and any observables are fairly low. We note that the model generates
interest elasticities of volatility that are statistically indistinguishable from
those in the data for several rates. We construct predictive densities for
butterf ly spread regressions and see that the coefficients on the shorter-
term rate are smaller, and the coefficients on the longer-term rate are larger
in the data than from the model. We also note that under the model, the
first eigenvalue explains statistically more than its empirical counterpart in
the data in both the two- and three-factor models. Finally, several recent
papers have questioned the ability of dynamic term structure models, such
as CIR, to explain the deviations in the data from the expectations hypoth-
esis. We also look at this dimension of the model—in a sense combining the
cross-sectional and time-series implications in a single metric. Here we see
that the predictive density from the model actually departs more from the
expectations hypothesis than does the data.

Dai and Singleton ~2000a! generalize the class of affine term structure
models and demonstrate that models with correlated factors are needed to
fit swap spreads. They use Simulated Method of Moments to estimate the
parameters of their models and compare the models. The findings of this
paper complement Dai and Singleton. Our findings on the inconclusiveness
of the number of factors complements studies that have documented that
two independent factors are inadequate, but that three independent factors
may overfit the data. More importantly, Dai and Singleton is primarily a
model selection exercise, while we focus on the model’s ability to explain and
fit important properties of interest rates. In addition, we explicitly examine
the amount of information that can be extracted from a panel of yield data
using the CIR model for the pricing and hedging of derivatives.

A natural theoretical extension to term structure models would be to allow
uncertainty as to the model parameters and factor levels on the part of
market participants. The approach taken in this paper is to assume that the
agents in the economy know the parameters and the current levels of the
state variables. The econometrician knows neither and must infer them af-
ter observing the data. It might be more realistic to model the economic
agents analogously to our econometrician. The methods introduced in this
paper are a necessary first step in assessing the efficacy and viability of
such an extension to the theory.1

The remainder of the paper is organized as follows. Section I reviews the
problem of estimating term structure models. Section II lays out the model,
the likelihood function, and the conditional densities used in the Gibbs sam-
pler. Section III explains how we implement the Gibbs sampler. Section IV
introduces the data used in the analysis. Section V contains the results.
Section VI concludes the paper.

1 Parameter and state variable uncertainty play an important role in modeling asset pricing
for both equities as well as derivatives ~Veronesi ~1999! and David and Veronesi ~1999!,
respectively.!
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I. Literature Review

The substantive problems addressed by this paper are the estimation of
the CIR model’s parameters and latent factors and an analysis of CIR’s abil-
ity to fit cross-sectional and time-series patterns in interest rate data. This
model is a member of the class of dynamic term structure models ~Dai and
Singleton ~2000a! provide a taxonomy of this class!. Empirical analysis of
this class of models has proceeded along a variety of different paths. One
question is the role of errors. Wall Street practitioners often require that
their specification fit the yield curve exactly. This is accomplished by adding
degrees of freedom that also make the specification dynamically inconsis-
tent. Another way to avoid adding errors to the model is application of string
theory ~Santa-Clara and Sornette ~1999!!, which uses an infinite dimen-
sional state space ~although with restrictions! to fit the yield curve exactly.

More traditional approaches specify a low dimensional state space and
add errors to a term structure model so that the model is not expected to fit
any yield curve exactly, but might explain broad patterns in both cross-
sectional and dynamic aspects. Even this is not straightforward, since the
most important term structure models specify non-Gaussian transition den-
sities for the factors. This has the effect of rendering standard filtering meth-
ods inappropriate. To circumvent this problem and retain consistency, two
approaches have been applied. In the first, it is assumed that J of the M
bonds in the sample are observed without error. This has the effect of forcing
the time-series restrictions of the model to hold and forcing the tension be-
tween the model and the data to the cross-sectional implications of the model.
Duffie and Singleton ~1997! offer an example of this approach. They find
that a two-factor CIR model fits the term structure of swap rates. Pearson
and Sun ~1994! also use this approach in a study of monthly yield data on a
variety of Treasury instruments over the period 1971 through 1986. They
find that the model performs poorly: The sensitivity of parameter estimates
to the different data sets is used as grounds for rejection. Also, they report
that the model provides worse out-of-sample fit than a simple martingale
specification for yields.

From an efficiency perspective, this procedure is unattractive because it
assumes that the yields used as the factors are observed without error, but
that the other yields in the sample are observed with error. In fact, all in-
struments are likely to contain some independent information about the state
variable~s!. This suggests that efficiency could be improved by using all of
the information in the data to identify the state variables and test simulta-
neously. Furthermore, identifying a factor with a yield presupposes a very
specific effect from adding additional factors. We show below that adding a
third factor to the two-factor model improves the fit on the shortest and
longest term yields in the sample, but provides a worse fit on the other three
yields. If we were to identify a factor with a yield, it is less likely that we
would observe this effect ~if for no other reason that perforce, we would now
fit three of the bonds exactly and have only two for overidentifying restric-
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tions!. Finally, Pearson and Sun’s ~1994! finding that the parameter esti-
mates varied substantially as a function of the choice of instruments selected
to identify the factors provides motivation for a more efficient identification
scheme. Since such a choice is arbitrary, an approach that conditions on all
of the data is indicated.

Estimation in this context may use a conditional likelihood function or
generalized method of moments to ascertain whether the relationships among
the data—both cross-sectionally and over time—are unusual given the model.2
Similarly, one could use rank restrictions on the cross section of bonds, since
under the model, the rank of this variance covariance matrix is the number
of factors.3 These approaches provide little insight into potential strengths
and weaknesses of the model.

A second approach uses the Kalman filter to identify the state variable~s!.4
While this approach has the potential to be more efficient than the previous
method, it suffers from a theoretical inconsistency. The state variables in CIR
are not allowed to be negative. The Kalman filter uses a linear projection that
assumes a normally distributed state variable to be optimal. However, the tran-
sition density of the state variable~s! in CIR is noncentral chi-squared. An ad-
ditional critique of this method is that it does not provide insights into the
strengths and shortcomings of the model. We might use a likelihood ratio test
to reject a two-factor model against the alternative of a three-factor model, but
how do we evaluate the three-factor model? It is not nested in a more general
pricing framework. De Jong ~2000! uses the Kalman filter to estimate an af-
fine term structure model. He analyzes monthly yields on Treasury instru-
ments over the period 1970 through 1991. He finds that a three-factor model—
with correlated factors—improves the fit of the two-factor model, concluding
that a three-factor model gives a nice fit to the data.

All of these methods add a separate model to CIR to allow econometric
testing. This auxiliary model is simply a statement about the data. It says
that under the null hypothesis, the data are equal to the fitted value from
the CIR model plus a well-behaved error term. Recall that without this ad-
ditional model, CIR would be solved via a just-identified system of equations
and then rejected almost surely by failing to fit additional data.

As noted, our focus is on constructing predictive densities of functions of
the term structure model. Decision makers can integrate over these densi-
ties in applications and use them to evaluate the fit of a particular model for
a particular purpose. The error-augmented model states that any function of

2 Gibbons and Ramaswamy ~1993! is an example of the use of Generalized Method of Mo-
ments. Dai and Singleton ~2000a! use Simulated Method of Moments.

3 Stambaugh ~1988! is an example of this approach. In addition, there is a large literature
that focuses exclusively on the time-series restrictions of term structure models, such as CIR.
It is common for this literature to examine the nonlinear dynamics of the short rate. Such
research is an exploratory first step in evaluating a subset of the restrictions of a term struc-
ture model, since the cross-sectional restrictions of such models are more difficult to deal with
econometrically than the time-series restrictions.

4 Chen and Scott ~1994! and DeJong ~2000! are examples of this approach.
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the term structure may be expressed as f ~CIR~Q! 1 e!. Note the additive
nature of the CIR model, which is a function of unknown parameters and
state variables ~collected in Q!, and the errors in the data, represented by e,
that have the cumulative distribution function G~e!. We will evaluate the
exact predictive densities of * f ~CIR~Q! 1 e! dG~e!. Given the additive na-
ture of the two models, this expectation is a way to isolate the fit of the CIR
model, per se. We are also in a position to evaluate the cross-sectional versus
the time-series properties of the model separately.5

Finally, many recent papers have looked at the time-series properties of a
single interest rate over a long time horizon ~e.g., Chan et al. ~1992!, Aït-
Sahalia ~1996!, and Stanton ~1997!!. This literature documents important
nonlinearities and, in general, more volatility of variance than would be
expected under a CIR model.6 We use a short horizon wherein Fed operating
policy is essentially fixed, and we use a wide cross-section of interest rates
on zero-coupon bills and strips.

II. The Model

CIR models an equilibrium, no-arbitrage economy, with a representative
agent. From an econometric point of view, the model links the data on yields
to one or more latent factors. The model posits that the time-series evolution
of this latent factor is a mean-reverting, square-root process:

dzj 5 kj ~uj 2 zj !dt 1 sj!zj dvj , ~1!

where j 5 1, . . . ,J ~the number of factors! and vj is a Wiener process.
CIR shows that the transition density for any zj at time t 1 s conditional

on its realization at time t is given by ~suppressing the j subscript!

f ~zt1s 6zt ! 5 ce2u2nS n

uDq02

Iq~2~un!102 !, ~2!

where

c 5
2k

s2~1 2 e2k{s !
, u 5 czt e2k{s, n 5 czt1s , q 5

2ku

s2 2 1,

and Iq is a modified Bessel function of the first kind of order q.
Bond prices depend on the current value of the state variable, as well as

its expected evolution, along with a risk premium, l. Specifically, the price
of a t-year bond, at time t is

5 The method of statistical model evaluation ~essentially evaluating the viability of a model
without comparing it to alternatives! by comparing functions of the data to a predictive ~pos-
terior! density is discussed in Meng ~1994! and Gelman et al. ~2000!.

6 Although the small sample properties of some of these estimators are questioned by Chap-
man and Pearson ~2000!.
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Pt, t1t 5 )
j51

J

Lj, t, t e2bj, t, t{zj, t, ~3!

where

Lj, t, t 5 F 2gj e @~kj1lj1gj !t#02

~kj 1 lj 1 gj !~e
tgj 2 1! 1 2gj

G2kj uj 0sj
2

,

bj, t, t 5
2~e tgj 2 1!

~kj 1 lj 1 gj !~e
tgj 2 1! 1 2gj

, gj 5 ~~kj 1 lj !
2 1 2sj

2!102.

For zero coupon bonds, the continuously compounded yield to maturity is

Rt, t1t 5

(
1

J

~bj, t, t{zj 2 log Lj, t, t!

t
. ~4!

A. Likelihood Functions

Suppose that we have T observations on M bonds and J factors. If we
assume that the data are measured with Gaussian errors, we may write the
conditional likelihood function as

L~data 6z,parameters! @ )
t51

T

6S62102e et
'
S21et ~5!

@ 6S62T02e
(
t51

T

@rt1At2Bt zt #
'
S21 @rt 1 At 2 Bt zt #

, ~6!

where e is the M-vector of residuals, S is E~ee
'
!, and rt is an M-vector. At is

an M-vector, with elements am, t 5 ~10tm, t !(j51
J log Lj, t, tm, t

. Bt is M 3 J, with
elements bm, j, t 5 ~10tm, t !bj, t, tm, t

and zt is a J-vector. The reason for the t
subscript on A and B is that there is no requirement that the bills and
principal-only treasury strips ~POs! in our sample have the same duration
at each point in the sample. In fact, since long bonds are typically auctioned
every six months, the durations of the three long-term POs in our sample
vary somewhat over the period.

Unlike many models that have latent time-series processes, the param-
eters governing the evolution of the latent process enter directly into the
conditional likelihood. Nevertheless, the change of measure ~i.e., nonzero l!
is not identified in the conditional likelihood ~note that only s, k 1 l, and
k{u are identified there!. The law of motion for the z is specified in the
actual measure, however ~equation ~1! or ~2!!. Therefore, all parameters are
identified in the joint likelihood:
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L~data, z 6parameters! @ )
t51

T

6S62102e et
'
S21et )

t50

T

f ~zt116zt !. ~7!

The problem at this point is that the zt are not observed. Obtaining the
marginal distribution of the parameters under the likelihood is a daunting
task because of the high dimensionality of the latent factor space. Since the
number of bonds is larger than the number of factors, it is not necessary to
impose factor orthogonality to identify the model, and we do not impose this
orthogonality restriction in the estimation. When we examine the results,
we will look at the predictive densities of the correlations between the fac-
tors. In this sense, orthogonality between the factors provides an overiden-
tifying test of goodness-of-fit.

To use the likelihood to probabilistically describe parameters and other
functions of interest, we have to integrate over the state space. Intuitively,
these integrals will be obtained by treating ~7! as the conditional density of
random variable zj, t—for example, taking the data, all parameters, and all
other values of z as given. Proceeding with this approach through the entire
state and parameter space generates a sequence of conditional densities.
The average of these conditional densities forms the marginal predictive
density. This type of Monte Carlo integration is referred to as the Gibbs
sampler, and it has been shown to converge to the appropriate marginal
distribution under mild regularity conditions ~Geweke ~1995a!!.7

B. Conditional Densities for the Gibbs Sampler

As noted above, the Gibbs sampler works by taking sequential conditional
draws from the parameter and state space.8 We construct marginal predic-
tive densities from these conditional draws. In the conditional densities de-
scribed below, we treat the particular parameter or state variable as a random
variable. When taking the relevant draw, we condition on the data and the
most recent draws of the other parameters and state variables. A “draw”
refers to the step when a single parameter or state variable is obtained by
simulating a single variate from the full conditional distribution function for
that variable. An “iteration” refers to a sequence of such draws over the
entire state and parameter space. Thus, a single iteration from the two-
factor model involves taking eight parameter draws, a draw from S, and
~T 1 2! 3 2 draws of z. The key to obtaining the full conditional density of a
parameter or state variable is to view the joint likelihood ~7! as a kernel
~proportional to the density! for that variable.

7 It may appear odd that we introduce the Gibbs sampler, which is simply a technique for
doing the computations, prior to presenting the conditional densities. But it is because the
Gibbs sampler obtains the marginal predictive densities by repeated sequential draws from the
full conditional densities that our attention shifts to these conditional densities. Were we ob-
taining the predictive using direct analytics, we would not need the conditional densities.

8 For an introductory treatment of the Gibbs sampler, see Casella and George ~1992!. For
conditions under which the Gibbs sampler converges to the marginal predictive density, see
Geweke ~1995a!.
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B.1. Conditional Density of State Variable(s)

Since z is a first-order Markov process, the conditional density for zt , given
all other z variables, the parameters, and the data is ~from the law of total
probability!

f ~zt 6 {! @ f ~rt 6zt ! f ~zt 6zt21! f ~zt116zt !. ~8!

The first kernel on the right-hand side is the conditional likelihood func-
tion on date t, viewed as a function of the random variable zt , with the data,
all other parameters, and the values of the other state variable~s! at t ~for
the multifactor model!, and the state variable~s! at all other t treated as
fixed ~equation ~6!!. The second and third kernels of f ~zt ! are noncentral
chi-square densities ~equation ~2!!. Note that zt has support only on the
positive real line.9 We integrate over the starting and ending conditions, by
drawing z0 conditional on the current draw of z1. We draw zT11 conditional
on zT , using ~2!.

B.2. Residual Variance-Covariance Matrix

If we view S as the random variable in the joint likelihood ~7!, we have a
standard inverse Wishart density @i.e., S21 ; W~T,(t51

T et et
'!# . Note that in

dropping all unnecessary terms in ~7! that do not involve S, we see that S is
identified in the conditional likelihood ~6!.

For our case, S is a 5 3 5 matrix. Draws from this multivariate density are
made by recognizing that the Choleski factorization may be obtained by tak-
ing univariate draws from a x2 density for the diagonal elements and a
univariate normal density for the off-diagonal elements ~see Muirhead ~1982!,
p. 99!.

B.3. Model Parameters

Identification of k, l, s, and u involves the following full conditional den-
sities ~presented here explicitly for k, but synonymous for the other three
parameters!:

f ~k 6data, all other parameters! @ L~data 6k, z,{! f ~z 6k,{!.

The density above is evaluated by viewing k as the random variable and
everything else as fixed. Also, in the case of l, the last kernel is a constant
~there is no information in the time series of z about l! and is dropped for
the purpose of obtaining the conditional density f ~l 6data, all other param-

9 This provides a contrast to the use of the Kalman filter where a linear projection is used to
concentrate zt into the likelihood function. There is no restriction that z be nonnegative, and
the linear projection is optimal only for the case of normality, which is inappropriate here.
Duffie and Singleton ~1997, p. 1300! add a constant to the factor to ensure nonnegativity of the
state variable. Since our state variables are drawn from the noncentral x2 density, they must
be positive—obviating the need for such a constant.
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eters!. These conditional densities must be evaluated numerically, as dis-
cussed below. Therefore, as with z, we have to evaluate these in a univariate
way: In the case of the two-factor model, we take a draw from k1 conditional
on k2 ~and the rest of the parameters and the state variables!, and similarly
for k2, and so on.

Note that unlike the other parameters in ~1!, s is identified in the condi-
tional likelihood ~6!. We could therefore evaluate this parameter, without
including the effect of sj on the zj time series in the conditional predictive
density. We choose to include the z in learning about s here to preserve
symmetry with the other parameters—using all information from the time
series and cross section of the data to identify the parameters.10

III. Implementing the Gibbs Sampler

With the exception of S, which is inverse Wishart, the implication of the
joint likelihood for the distributions of the parameters and the state vari-
ables are nonstandard. We use a numerically intensive procedure to take
draws from these conditional densities. The procedure requires evaluating
the kernel ~discussed in the previous section! at a series of points along a
grid to identify an appropriate range. Next, we create an unequally spaced
grid within this range, with more points centered around the maximum. The
ordinate in this grid is normalized and linearly interpolated to construct a
cumulative density function ~cdf !. An inverse cdf method is used to map a
uniform @0, 1# draw onto this cdf. Simulations suggest that a local linear
interpolation method is a robust way to approximate the cdf ~as opposed to
a spline method, which tends to degenerate in the tails!. This method avoids
the need to evaluate any integrals numerically. It takes roughly 25 seconds
on a Sun Ultra 10 to obtain one complete iteration from the parameter space
for the two-factor model. This procedure is called the “griddy Gibbs sam-
pler,” in Ritter and Tanner ~1992!.

A nice feature of the Gibbs sampler is that we can store the draws from
each iteration and return to these later to evaluate functions of interest. The
predictive densities of these functions of interest are the set of values ob-
tained by evaluating the function at each iteration from the entire state
variable and parameter space. This forms a Markov chain for any parameter
or function of interest, and we can evaluate the numerical accuracy by ex-
amining the serial dependence within the Markov chain ~e.g., by comparing
the spectral density at 0 frequency of this chain to the variance of the
iterations!.

10 In an earlier draft of this paper, the conditional densities of s were not dependent on
z—they were only obtained from the conditional likelihood. The qualitative results in that ver-
sion were virtually identical to those in this version. The predictive densities on s are tighter
in this draft, but the other parameters are a bit more diffuse. The reason this parameterization
does not have much of an effect is that the z after all are not observed, and the likelihood is
itself conditioned on the z.
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To eliminate dependence on starting conditions, we take a burn-in set of
iterations before keeping any iterations to form the set of predictive densi-
ties. Standard practice is to use a burn-in of around 1,000 draws. We took
9,000 burn-in iterations in all cases, recognizing the high dimensionality of
the state space and slow evolution of the state variables. For the analysis
that follows, we have 12,500 iterations, post burn-in in all cases.

IV. Data

The data are hand collected from the Wall Street Journal. We have the ask
yields-to-maturity for the 13-week and 26-week Treasury bills, along with
approximate 5-, 15-, and 25-year Stripped Principal T-Bonds ~POs!. The du-
rations of the Principal Strips vary throughout the sample. This poses no
problem for the analysis, as the appropriate term to maturity for each in-
strument is always used in the conditional likelihood function. The data are
at a weekly frequency, from each Wednesday covering the period June 14,
1989, through February 28, 1996. For the one year in the sample when Christ-
mas and the following New Year fell on Wednesday, we use data from the
preceding Tuesday. In describing the functions below, we refer to the mth
shortest-term yield in our sample on date t as rm, t .

V. Results

We present the results in three stages to highlight the insights that our
estimation approach affords. First, we look at the goodness of fit of the one-,
two-, and three-factor models. Next, we examine the relationship between
the model and the data in more detail. Last, we identify the amount of in-
formation in the interest rate data to characterize ~or to define with preci-
sion a density for the function of interest from the likelihood and data about!
derivative prices and elasticities.

A. One-Factor Model

Figures 1 and 2 show the time series of the 90-day T-bill and 25-year PO
yields, respectively, along with the 99th percentile bands of the predictive
densities for these yields. As noted above, we use the entire sample to con-
struct predictive densities on the model parameters, as well as the state
variable~s!. Within the context of a single iteration from this entire space in
the Gibbs sampler, there is an implication for any interest rate on each date
in the sample ~which is simply a deterministic function of the parameters
and state variables!. There are 12,500 such iterations, which comprise the
marginal predictive density on any function of the model, such as the inter-
est rate in question. In the parlance of Bayesian econometrics, the posterior
on an observable is usually referred to as a predictive density ~Geweke ~1994!!.
The figures overlay characteristics of the interest rate predictive density on
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each date in the sample on actual data. These predictive densities are mar-
ginal densities for the observables ~e.g., yields!, obtained by integrating over
the predictive densities of the parameters and state variables. In comparing
the predictive densities to the data, we have argued that the data are mea-
sured with error, so the predictive densities must integrate over the error
space. This can be accomplished by evaluating the following integral at each
Gibbs draw: * f ~model 1 e! dG~e!. When f is a linear function, this integral
is tantamount to ignoring the errors. When it is nonlinear, we must evaluate
the integral directly. In this manner, the functions of interest are themselves
expectations from the joint model ~CIR cum errors!. These predictive densi-
ties are different from confidence intervals in that they characterize the
probabilistic structure of the CIR model only ~i.e., the expectation taken over
the error space!.

The one-factor model does a reasonably good job of fitting the short rates
in sample, as demonstrated in Figure 1. The 99th percentile bands of the
predictive density average 26 basis points wide. These bands contain 30 per-
cent of the data. The sample root-mean-square error ~RMSE! between the
data and the median of the predictive density on each date is 23 basis points.
However, the one-factor model is clearly inadequate to explain the long rates.
The predictive density on the 25-year PO ~Figure 2! is almost horizontal,
ref lecting the mean reversion of the model, and the dominant effect of the

Figure 1. Time series of 90-day bill yield. Ninety-ninth percentile predictive density bands
from the one-factor CIR model, overlaid the data, which are weekly observations of yields on
90-day U.S. Treasury bills.
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long-run mean of the state variable.11 Figure 2 provides a context to evalu-
ate the econometric treatment of the two separate models ~and the role of
the joint likelihood function!. It is interesting that the joint likelihood attributes
most of the inability of the CIR model to fit long yields to errors. Thus, there
is adequate information in the short rate and cross-sectional restrictions of
CIR to precisely identify the parameters and state variables: The failure of
CIR to describe long rates did not create uncertainty about them. This high-
lights the importance of model evaluation using predictive densities—under
the one-factor model we have little uncertainty as to where long rates are
and how they behave, but the model is obviously a bad way to fit the data.

Table I shows properties of the predictive density of the error variance–
covariance matrix from the one-factor model. Each iteration from the set of
conditionals on the parameters includes a draw from S. The diagonal ele-
ments in Table I ~in bold! show the distributional properties of the square-
root of the diagonal elements of S. The off-diagonal elements of Table I show
the distributional properties of the correlations implicit in S. As with all

11 Several earlier empirical studies are more favorably disposed to the one-factor model, but
it should be noted that such studies typically do not have any instruments with durations
exceeding five years. By extending this to 25 years, we highlight an important problem with
ignoring the long end of the yield curve.

Figure 2. Time series of 25-year bond yield. Ninety-ninth percentile predictive density
bands from the one-factor CIR model, overlaid the data, which are weekly observations of yields
on 25-year principal only strips of U.S. Treasury bonds.
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Table I

Predictive Density of Variance–Covariance Matrix One-,
Two-, and Three-Factor Models

Diagonal ~bold! entries are square roots of the diagonal entry in the variance–covariance matrix of the error terms. Off-diagonal entries are
correlations between residuals. The residuals are the result of adding a model of independent, identically distributed, Gaussian errors in the data
to the CIR model to generate a likelihood function. The predictive density is the likelihood function—conditioned on the data—viewed as a
density function for S and marginalized over all other unknown parameters and state variables.

One-Factor Two-Factor Three-Factor

Element 5%ile 10%ile mean 90%ile 95%ile 5%ile 10%ile Mean 90%ile 95%ile 5%ile 10%ile Mean 90%ile 95%ile

1,1 0.0019 0.0020 0.0024 0.0029 0.0030 0.0007 0.0008 0.0011 0.0014 0.0014 0.0006 0.0007 0.0010 0.0014 0.0015
1,2 0.6789 0.7243 0.7992 0.8642 0.8744 20.0275 0.0955 0.4454 0.7445 0.7807 0.5400 0.6316 0.8396 0.9676 0.9743
1,3 0.7884 0.8179 0.8771 0.9250 0.9347 0.1380 0.2630 0.5746 0.8366 0.8641 0.4519 0.5569 0.7961 0.9480 0.9574
1,4 0.8446 0.8726 0.9226 0.9592 0.9645 0.0051 0.1083 0.4291 0.7126 0.7506 0.5378 0.6228 0.8193 0.9455 0.9546
1,5 0.8521 0.8773 0.9208 0.9529 0.9581 20.3694 20.2675 0.0048 0.2643 0.3222 0.3714 0.4763 0.7361 0.9107 0.9264
2,2 0.0024 0.0026 0.0030 0.0035 0.0036 0.0015 0.0016 0.0020 0.0025 0.0026 0.0021 0.0022 0.0027 0.0032 0.0033
2,3 0.9480 0.9570 0.9724 0.9853 0.9876 0.9117 0.9223 0.9468 0.9682 0.9715 0.9427 0.9485 0.9639 0.9772 0.9799
2,4 0.8976 0.9110 0.9410 0.9684 0.9733 0.7957 0.8216 0.8859 0.9360 0.7456 0.9295 0.9388 0.9574 0.9734 0.9768
2,5 0.8578 0.8754 0.9124 0.9457 0.9522 0.1243 0.1800 0.3665 0.5421 0.5822 0.8764 0.8909 0.9229 0.9513 0.9567
3,3 0.0072 0.0073 0.0078 0.0082 0.0083 0.0030 0.0031 0.0035 0.0040 0.0041 0.0029 0.0030 0.0035 0.0040 0.0041
3,4 0.9672 0.9687 0.9732 0.9775 0.9785 0.8620 0.8818 0.9279 0.9631 0.9678 0.9607 0.9656 0.9781 0.9887 0.9904
3,5 0.9340 0.9367 0.9452 0.9533 0.9553 0.1863 0.2342 0.3916 0.5473 0.5853 0.9566 0.9627 0.9743 0.9840 0.9859
4,4 0.0077 0.0078 0.0082 0.0086 0.0088 0.0014 0.0014 0.0018 0.0021 0.0022 0.0018 0.0019 0.0023 0.0027 0.0029
4,5 0.9826 0.9834 0.9857 0.9878 0.9883 0.4824 0.5186 0.6309 0.7289 0.7477 0.9309 0.9394 0.9574 0.9724 0.9749
5,5 0.0061 0.0062 0.0065 0.0068 0.0069 0.0012 0.0013 0.0015 0.0017 0.0018 0.0015 0.0016 0.0019 0.0022 0.0023
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parameters, the density function is formed by treating each of the Gibbs
iterations as a draw from the marginal posterior. Note that the average
standard deviation of the error on a 90-day bill yield is 24 basis points. The
maximum average error size occurs at the 15-year PO yield ~82 basis points!.
The noise terms for all five yields are highly intercorrelated. On average,
the correlation between the unexplained yield on a 15-year bond and a 25-
year bond is 98.6 percent.

The main result here is the predilection of the one-factor model to fit short
rates. The means ~from the predictive densities! of the standard deviation of
the three bond yields are more than twice as large as those on the two bills.
There is too much volatility in long rates to be consistent with short rates
and a one-factor CIR model. The model’s prediction of very stable long rates
is strongly at odds with the data. This result suggests that a one-factor CIR
model cannot characterize bond prices in the United States.

B. Two-Factor Model

As noted above, the two-factor model used here is the special case in CIR
where the factors are orthogonal ~see Dai and Singleton ~2000a! for a dis-
cussion of these identifying restrictions!. Nevertheless, the parameters ~and
state variables! are identified without imposing orthogonality on the state
variables. We assume that the data contain unmodeled noise that is multi-
variate normally distributed and independent over time, as in the one-factor
case. Table I also contains the predictive density of the “noise” standard
deviation0correlation matrix from the two-factor model. Note that the diag-
onal entries for the long bonds are roughly one-third as large as in the one-
factor case. Also, the off-diagonal entries are materially smaller than in the
one-factor case. This evidence suggests that the errors from the two-factor
model behave more like their theoretical counterparts than in the one-factor
case. The errors are largest for the five-year PO strip yields. The mean
standard deviation of 35 basis points for this instrument’s yield errors seems
high relative to the bid-ask spread ~expected to be less than 15 basis points!,
but is still less than half the size of the one-factor model’s.

Figures 3 and 4 show the ability of the two-factor model to fit the short
and long end of the yield curve, respectively. Clearly, the two-factor model
improves on the one-factor model’s fit of the long bond yields. For the six-
month bill rates, this two-factor model generates 90th ~99th! percentile bands
of the predictive density that are 18 ~26! basis points wide on average, and
these model bands contain 33 percent ~43 percent! of the data. The RMSE of
the 180-day bill rates relative to the median of the predictive density is 19
basis points. Figure 4 shows that the two-factor model clearly has enough
f lexibility to fit the overall pattern of long rates in the sample, which is in
contrast to the one-factor model. Of the 351 yields in the sample, 163 do not
fall within the 95 percent bands of the predictive density. In these cases, 84
lie below the 2.5 percentile bound of the predictive density, with an average
distance of 7.5 basis points, and 79 lie above the 97.5 percentile predictive
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density bound, with an average distance of 6.4 basis points. The average
width of the 95 percent ~99 percent! bands is 22 ~26! basis points. Over the
sample, the standard deviation of the width of the 95 percent bands is three
basis points—suggesting that the precision of estimates changes signifi-
cantly over time. Finally, it is clear from both figures that the model errors
are serially dependent, which violates an assumption of the model—that all
time series dependencies are due to the factors. However, the efficacy of the
model depends on the user’s needs. For the yields on the 25-year PO strip,
the 99 percent predictive density bands average 26 basis points wide, con-
tain 62 percent of the data, and the data that does not lie within the pre-
dictive density bands averages 6.96 basis points away from the band.

Table II reports the predictive densities of the parameters and steady-
state variance of the factors from the two-factor model. Note that the stan-
dard deviation of the predictive density of the sum of u1 and u2 is smaller
than that of u2. This ref lects the negative correlation between these two
parameters ~of 274 percent!. We also see that the second factor is much
less mean-reverting than the first ~k2 , k1!. The risk premia of both fac-
tors is of the standard sign-higher risk premia associated with longer ho-
rizons ~l1, l2 , 0!. The risk premium on the first factor is much larger
than that on the second factor.

Figure 3. Time series of six-month bill yield. Ninety-ninth percentile predictive density
bands from the two-factor CIR model, overlaid the data, which are weekly observations of
yields on 180-day U.S. Treasury bills.
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C. Three-Factor Model

The two-factor model produced a much better fit of the data than the
one-factor model. It is therefore natural to evaluate the three-factor model.
Figure 5 shows the fit of the three-factor model to the 25-year PO yield.
Table I also contains the same information for the three-factor model as the
other models. A standard way to evaluate the improved fit of the three-factor
model is a portmanteau test based on the likelihood or its GMM counter-
part. Consider the conditional likelihood ~equation ~6!!. By averaging this
conditional likelihood over the Gibbs draws, we construct the predictive den-
sity of the marginalized conditional likelihood. For the three-factor model,
the median value of this log-likelihood is 10,303.0. For the two-factor model,
the median is 9,809.7. The interquartile range on this function for the three-
factor ~two-factor! model is @10,259.9,10.351.9# ~ @9,770.9,9,850.7# !. From these
predictive densities, we can construct a standard portmanteau test statistic.
A likelihood ratio test would reject the two-factor model in favor of the three-
factor model at infinitesimal p-values.

However, if we are interested in a root-mean-square-error criterion, rela-
tive to the median of the predictive density, and in weighting all five yields
equally, then the two-factor model actually is preferable to the three-factor

Figure 4. Time series of 25-year bond yield. Ninety-ninth percentile predictive density
bands from the two-factor CIR model, overlaid the data, which are weekly observations of
yields on 25-year principal only strips of U.S. Treasury bonds.
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Table II

Predictive Density of Hyperparameters and Functions of Interest: Two-Factor Model
This table highlights features of the predictive densities of the eight hyperparameters and other functions of interest from the two-factor CIR
model, that is, the shape of the likelihood conditioned on the 351 weeks of yields on the five bonds in the sample. The parameters are as defined
in the text ~e.g., equations ~1! and ~3!!. The variable sss, j

2 is the steady-state variance of factor j. The variable corr~x1, x2! is the correlation
between a parameter of Factor 1 and the same parameter of Factor 2. The closer this correlation is to one in absolute value, the less well
identified are the separate factors.

Parameter 5%ile 25%ile Median Mean 75%ile 95%ile Std. Dev. corr~x1, x2!

u1 0.038 0.039 0.039 0.039 0.040 0.041 0.001 20.740
u2 0.017 0.021 0.030 0.029 0.036 0.046 0.009
u1 1 u2 0.0578 0.0609 0.0684 0.0687 0.0751 0.0841 0.0083 NA

s1 0.038 0.040 0.042 0.042 0.044 0.046 0.003 20.166
s2 0.080 0.082 0.083 0.083 0.085 0.087 0.002
s1 1 s2 0.1201 0.1231 0.1251 0.1251 0.1271 0.1300 0.0030 NA

k1 0.742 0.777 0.799 0.800 0.825 0.854 0.034 20.775
k2 0.015 0.020 0.025 0.028 0.036 0.046 0.010
k1 1 k2 0.7856 0.8085 0.8249 0.8278 0.8469 0.8746 0.0275 NA

l1 20.294 20.263 20.251 20.249 20.234 20.208 0.024 20.757
l2 20.087 20.078 20.069 20.072 20.065 20.062 0.008
l1 1 l2 20.3598 20.3300 20.3205 20.3211 20.3124 20.2882 0.0183 NA

sss,1
2 {1000 0.034 0.038 0.044 0.043 0.048 0.054 0.006 20.466

sss,2
2 {1000 1.345 1.933 4.111 4.583 6.333 10.568 2.921

~sss,1
2 1 sss,2

2 !{1000 1.394 1.980 4.152 4.626 6.378 10.610 2.918 NA
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model, as seen in Table III.12 Panel C of this table provides the goodness-
of-fit analysis for the three-factor model. We see that the three-factor model
fits the 90-day bill yield almost perfectly. The 95th percentile band of the
predictive density contains 96 percent of the data, with a band width of 27.1
basis points. The RMSE of the three-factor model’s predictive density me-
dian relative to the data is 7.4 basis points. This compares to 9.1 basis points
for the two-factor model. The only other instrument that three-factor model
fits better is the five-year PO. In this case, the RMSE of the three-factor
model’s predictive density median relative to the data is 33.2 basis points, as
compared to 34.4 basis points for the two-factor model.

For the other three yields though, the two-factor model is superior to the
three-factor model, in terms of goodness of fit: The average improvement for
these yields is 5.4 basis points. In both cases, the hardest data to fit are the
yields on the five-year PO. The predictive densities are much wider in the
case of the three-factor model—the average width is 29.2 basis points com-
pared to 23.8 basis points under the two-factor model. Averaging over all
five yields ~equally!, we see that the two-factor model has a RMSE of 18.5
basis points, whereas the RMSE of the three-factor model is 21.2 basis points.

12 This table includes results for a proper prior that will be discussed in the Appendix and
can be ignored at this point in the text.

Figure 5. Time series of 25-year bond yield. Ninety-ninth percentile predictive density
bands from the three-actor CIR model, overlaid the data, which are weekly observations of
yields on 25-year principal only strips of U.S. Treasury bonds.
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The fact that the predictive densities are wider in the three-factor model
than in the two-factor model is not surprising. The state space is larger and
so the joint likelihood function is f latter. The worse fit relative to the two-
factor model is surprising. Most previous analyses have concluded that the
three-factor model is an improvement relative to the two-factor model ~see,
e.g., Dai and Singleton ~2000a! and de Jong ~2000!!. Table IV reports the
predictive densities as in Table II, for the three-factor model. Note that the
values for k for the two factors from the two-factor model ~shown in Table II!
are centered near 0.8 and 0.03. The corresponding values from the three-
factor model are centered near 1.1, 0.16, and 0.1. The third factor, which is

Table III

Overall In-Sample Fit of Two-Factor versus Three-Factor CIR
Models: Diffuse Priors

Here we compare the actual yields with the predictive densities of those yields from both the two-
and three-factor models. A diffuse prior means that the predictive densities are simply the like-
lihood function viewed as a density for the particular function of the parameters and state vari-
ables. The proper prior is used for control purposes, and is discussed in the Appendix. RMSE rel.
to med. is the root-mean-square error of the model for the 351 yields in the sample on each in-
strument. The bands referred to in this table are 95th percentile bands from the posterior dis-
tribution of the interest rate ~constructed by integrating over the parameter and state variable
space!. All entries in this table are in basis points.

Instrument ~Yield!

RMSE Rel.
to Med.

~Bas. Pts.!
% Not in

95%ile Bands
Avg Dev

from Band
Avg Band

Width
Std. Dev. of
Band Width

Panel A: Two-Factor—Diffuse Prior

90-day bill 9.1 23.6 3.3 22.0 5.3
180-day bill 19.2 62.4 10.2 21.9 5.2
5-year bond 34.4 77.8 22.3 26.3 4.8
15-year bond 16.1 43.0 8.2 26.8 4.4
25-year bond 13.8 46.4 7.0 22.1 3.1

Eql wtd avg 18.5 50.6 10.2 23.8 3.14

Panel B: Two-Factor—Proper Prior

90-day bill 7.9 15.1 3.2 21.6 3.0
180-day bill 12.6 36.2 7.1 21.5 2.9
5-year bond 25.5 64.7 16.4 25.2 4.0
15-year bond 13.9 36.2 7.6 26.0 3.8
25-year bond 19.8 59.5 12.6 21.1 2.4

Eql wtd avg 15.9 42.3 9.4 23.1 3.24

Panel C: Three-Factor

90-day bill 7.4 4.0 1.4 27.1 5.5
180-day bill 25.7 59.0 14.9 27.6 5.4
5-year bond 33.2 57.5 20.2 36.4 4.9
15-year bond 21.5 44.7 12.0 31.3 4.9
25-year bond 18.1 51.8 9.7 23.3 3.4

Eql WTD AVG 21.2 43.4 14.2 29.2 5.12
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Table IV

Predictive Densities of Hyperparameters and Functions of Interest: Three-Factor Model
This table reports posterior distribution characteristics of hyperparameters and functions of interest from the three-factor CIR model. This table
highlights features of the predictive densities of the 12 hyperparameters and other functions of interest from the three-factor CIR model ~i.e., the
likelihood function conditioned on the 351 weeks of yields on the five bonds in the sample!. The parameters are as defined in the text ~e.g.,
equations ~1! and ~3!!. The variable sss, j

2 is the steady-state variance of factor j. The variable corr~xj , xk! is the correlation between a parameter
of factor j and the same parameter of factor k. The closer these correlations are to one in absolute value, the less well identified are the separate
factors.

Parameter 5%ile 25%ile Median Mean 75%ile 95%ile Std. Dev.

corr~x1, x2!
corr~x2, x3!
corr~x1, x3!

u1 0.034 0.034 0.034 0.034 0.034 0.034 0.0005 20.188
u2 0.0007 0.0009 0.0010 0.0010 0.0012 0.0014 0.000002 20.304
u3 0.013 0.013 0.014 0.014 0.015 0.016 0.0009 0.350
u1 1 u2 1 u3 0.0480 0.0485 0.0490 0.0493 0.0499 0.0517 0.0011 NA

s1 0.036 0.038 0.039 0.039 0.040 0.042 0.0020 0.125
s2 0.067 0.068 0.069 0.069 0.070 0.073 0.0016 0.269
s3 0.164 0.168 0.173 0.173 0.179 0.185 0.0067 0.223
s1 1 s2 1 s3 0.2704 0.2750 0.2815 0.2820 0.2887 0.2952 0.0080 NA

k1 1.035 1.083 1.116 1.125 1.157 1.259 0.063 20.426
k2 0.147 0.153 0.157 0.157 0.160 0.164 0.005 20.239
k3 0.089 0.096 0.106 0.104 0.112 0.119 0.010 0.223
k1 1 k2 1 k3 1.2922 1.3426 1.3783 1.3855 1.4181 1.5182 0.0640 NA

l1 20.293 20.279 20.269 20.270 20.260 20.251 0.013 20.216
l2 20.252 20.244 20.240 20.240 20.235 20.231 0.006 0.544
l3 20.244 20.226 20.216 20.219 20.209 20.203 0.013 20.276
l1 1 l2 1 l3 20.767 20.739 20.726 20.729 20.715 20.706 0.0186 NA

sss,1
2 {1000 0.019 0.021 0.023 0.024 0.026 0.029 0.003 0.066

sss,2
2 {1000 0.010 0.014 0.016 0.016 0.019 0.024 0.004 0.044

sss,3
2 {1000 1.517 1.707 1.945 2.043 2.325 2.864 0.413 0.286

~sss,1
2 1 sss,2

2 1 sss,3
2 !{1000 1.5555 1.7439 1.9890 2.1070 2.3670 2.9027 0.4149 NA
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the least mean-reverting, also has a relatively high standard deviation. Its s
of 17 percent is nearly twice as large as the more volatile factor in the two-
factor model. Further, its steady-state variance is more than twice as large
as the more volatile factor in the two-factor model. Note also from Tables II
and IV that in the three-factor model, all three factor risk premia ~l! are
centered between 20.21 and 20.27. In the two-factor case, the values are
more distinct from one another at 20.25 and 20.07. It appears that the
likelihood from the three-factor model uses the third factor to bounce around
quite randomly, which gives the almost perfect fit to the 90-day bill yield.
The relatively large l in absolute value and the lack of mean reversion pre-
sumably allow a better fit at the 25-year yield as well.

This section highlights that the likelihood criterion may not be a useful
one. It seems clear, however, that the deterioration of fit of the three-factor
model relative to the two-factor model is evidence of model misspecification.
The likelihood is dramatically improved by adding a third factor, but even
the average in-sample fit, relative to the predictive density median, is worse
with the three-factor model. The remainder of the results section focuses on
additional functions of these models to isolate where they do well and where
they do poorly in fitting properties of the data.

D. More Detail

D.1. Factor Correlations

Using the draws from the factor realizations, we construct the predictive
densities of the correlations between various functions of the factors from
both the two- and three-factor models. In the two-factor model, there is weak
negative unconditional correlation between the factors. The mean of the cor-
relation between the two factors is 210.4 percent, and the interquartile range
is @212.1 percent, 28.9 percent# . The rates of change of the factors are more
negatively correlated. The median of the predictive density of this correla-
tion is 220.3 percent, and the interquartile range is @223.1 percent, 217.5
percent# .

There is weak negative correlation between the squared rates of change of
the two factors. The correlation between the shock to the factors, after con-
ditioning on their own lags, is negative. The median of the predictive density
of this correlation is 237 percent, and the interquartile range is 240 percent
to 235 percent. Similarly, in the three-factor model, all three of the pairwise
correlations between these factor shocks are negative. However, when we
look at the predictive densities of the correlations in the factor levels from
the three-factor model, the correlation between factors one and two is neg-
ative ~mean of 247 percent! and the correlations between factors one and
three and two and three are positive.

As noted above, Dai and Singleton ~2000a! find that the factors must be
negatively correlated to best fit their data, which are yields on LIBOR and
2-year and 10-year fixed-for-variable rate swaps ~sampled weekly over roughly

1500 The Journal of Finance



our same sample period!. Dai and Singleton also looked at the implied fac-
tors in Duffie and Singleton ~1997! and found that they are strongly nega-
tively correlated: Extant studies that have looked at the correlation between
the two implied factors find it to be around 20.5.

D.2. Time Series Properties

As noted above, there is a large literature that examines the time-series
properties of a single interest rate over a long horizon ~this is typically a
short-term interest rate!. A common finding in this context is that the rela-
tionship between level and volatility of the rate is stronger than implied by
the square-root specification of CIR. The coefficient on rates is often esti-
mated to be between 1.5 and 2.0, instead of 0.5 as in CIR.13 This relationship
is addressed in Tables V and VI. Table V reports the correlations between
the level of interest rates in week t with the squared change in the rate from

13 Although, to be accurate, the implication of the continuous-time specification for dis-
cretely sampled data should be recognized, as in this study.

Table V

Correlations between the Interest Rates and Squared Change
in Rates: Data and Predictive Densities from the

Two-Factor CIR Model
Panel A shows the actual correlation between the yield in week t and the squared change in the
rate from week t 2 1 to week t. Also shown are the predictive densities of this function-of-
interest, under the model. For the three bonds in the sample, the duration of the POs varies
over the sample. In each case, the model evaluates a zero-coupon bond with the same duration
as the PO in the sample. Panel B shows the actual correlation between the yield in week t and
the squared change in the rate from week t to week t 1 1, along with the predictive densities
of this correlation.

Instrument Actual 2.5%ile 25%ile Median 75%ile 97.5%ile Mean
Std.
Dev.

Panel A

90-day bill 0.158 0.102 0.145 0.165 0.184 0.221 0.164 0.030
180-Day Bill 0.192 0.098 0.140 0.161 0.180 0.218 0.160 0.030
5-year bond 0.008 0.085 0.128 0.152 0.175 0.220 0.152 0.034
15-year bond 20.007 0.092 0.136 0.159 0.183 0.226 0.159 0.034
25-year bond 0.093 0.096 0.142 0.165 0.188 0.232 0.165 0.034

Panel B

90-day bill 0.170 0.116 0.159 0.179 0.198 0.235 0.178 0.030
180-day bill 0.203 0.111 0.155 0.175 0.195 0.232 0.174 0.030
5-year bond 20.002 0.092 0.136 0.160 0.183 0.227 0.159 0.034
15-year bond 20.026 0.098 0.142 0.165 0.187 0.229 0.165 0.034
25-year bond 0.057 0.105 0.149 0.172 0.194 0.236 0.172 0.034
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week t 2 1 to t in Panel A, and with the squared change in the rate from
week t to t 1 1 in Panel B. Even though the model is cast in continuous time,
these predictive densities are exact in discrete time. For both correlations,
we see that the 90-day bill yields fall within the interquartile range of the
predictive density. This suggests that contrary to the studies of short rate
dynamics, the two-factor CIR model captures the relationship between the
level and the volatility of the short rate well. In the case of the 180-day bill
yield, the data falls below the 97.5 percentile of the predictive density for
that parameter under both lag structures. For the three longer term bonds
in the sample, the value of the correlations estimated from the data lie be-
low the 2.5 percentile of the predictive density for that parameter in both lag
treatments. This is not surprising in light of the goodness-of-fit results above.
Here we document that the volatility of long yields in the sample is not
sensitive enough to the level of the yield to be consistent with the CIR model—
but this is not true at the short end of the yield curve.

Table VI shows the results of regressing the log of the squared change in yield
on two times the log level of yield at the beginning of the period. This can be
viewed as a log-linear, discrete-time approximation to the diffusion, where the
slope is an estimate of the interest rate elasticity of volatility. This is moti-
vated by Chan et al. ~1992!. As always with this analysis, the implications of

Table VI

Regressions of Log-Squared Price Change on Log-Lagged Rate:
Data and Predictive Densities from the

Two-Factor CIR Model
This table reports regression estimates from the data and the predictive densities of these
estimates from the following regression:

log ~rt11 2 rt !
2 5 a0 1 a1{2 log rt .

Panel A shows the intercept from this regression, and Panel B shows the slope coefficient.

Instrument ~r! Actual 2.5%ile 25%ile Median 75%ile 97.5%ile Mean
Std.
Dev.

Panel A: Intercept

90-day bill 29.47 214.185 212.993 212.371 211.770 210.615 212.377 0.917
180-day bill 210.35 214.112 212.839 212.170 211.503 210.257 212.172 0.993
5-year bond 211.12 212.938 210.145 28.778 27.423 24.676 28.789 2.081
15-year bond 26.36 212.308 29.217 27.600 25.979 22.718 27.590 2.434
25-year bond 214.78 210.951 26.631 24.320 21.971 2.641 24.284 3.468

Panel B: Slope

90-day bill 0.575 0.150 0.349 0.452 0.555 0.749 0.452 0.154
180-day bill 0.872 0.171 0.387 0.501 0.616 0.828 0.501 0.169
5-year bond 1.36 0.416 0.930 1.185 1.436 1.953 1.184 0.387
15-year bond 0.040 0.546 1.142 1.455 1.764 2.395 1.455 0.469
25-year bond 1.935 0.903 1.745 2.198 2.657 3.563 2.206 0.680
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the model for this regression are complicated, but the exact densities of the pa-
rameters are available via the Gibbs sampler. It is clear from the predictive
density on the slope parameters that this parameter is not estimated pre-
cisely. The 95th percentile predictive density band for the slope coefficient in
the case of the 25-year yield is @0.9, 3.6# . Here, the 90-day, 5-year, and 25-year
yields all lie within the 95th percentile bounds of the predictive density on the
slope. The slope in the case of the 180-day yield lies above the 97.5 percentile
of the predictive density, whereas the slope in the case of the 15-year yield lies
below the 2.5 percentile of the predictive density.

In this sample, the two-factor CIR model provides a reasonable character-
ization of the time-series properties of the short-term interest rate. The over-
all patterns of the longer rates are also characterized by the model. There is
evidence that whether the model can adequately fit the interest elasticity of
volatility depends on the framing of the question. While the correlations ~in
Table V! for the 5-year and 25-year yields lie below those from the model,
the slopes ~in Table VI! for both of these yields fall within the model’s in-
terquartile bands. However, in both cases, the 15-year yield volatility is less
sensitive to the level in the data than under the model. We might speculate
that the higher interest rate elasticity of volatility found in earlier studies is
due to regime shifts over the long horizons commonly used in those studies.
We use a short period that is characterized by a single Federal Reserve
policy, but nevertheless experiences a variety of yield curve shapes and het-
erogeneous interest rates. If we had estimated the model on data starting in
1979, we would be asking a single model to fit both the high interest rate,
high volatility regime of 1979–1983, as well as the lower rate, lower vola-
tility regime of the 1990s. It is clear that measured interest rate elasticity of
volatility would be much higher had we included the two regimes.14

Another time-series issue involves pinning down the factors, which may be
achieved by evaluating the correlations between the factors and observed
variables. There is almost unanimous agreement that the most important
factor in the term structure is the level of rates, followed by the slope of the
yield curve. There is some question of whether, in fact, the second factor is
volatility, but identification is a problem, and as discussed in Dai and Single-
ton ~2000a!, CIR involves all factors exerting a separate inf luence on yield
volatility. We examine the predictive density of the correlations between the
factors and various observables for both the two-factor and three-factor mod-
els. Under both models, the first factor is highly correlated with the short

14 In fact, we replicate the ad hoc GMM estimation of the discrete-time specification of Chan
et al. ~1992! on 90-day yields post 1979, obtained from the Federal Reserve Database, and then
on the post-1988 period. We find an interest rate elasticity of volatility of 1.5 on the former and
0.46 on the latter. This is not a formal statement that there are regime shifts. But, from the
perspective of a simple model that is not informed by macroeconomic factors, it seems likely
that estimation over long intervals will be confounded by changing policy regimes. Since it is
possible that the model that is not informed by the macroeconomy might appear to experience
regime shifts, it is incumbent on term structure empirics to identify how much information can
be obtained from cross-sectional data, from a relatively short time period.

Empirical Analysis of the Yield Curve 1503



rate: The mean correlation is 88 percent in both models, and the predictive
densities are very tight. This factor is also very highly correlated with the
negative of the difference between the 25-year PO yield and the 90-day bill
yield in the two-factor model: The mean correlation is 98 percent, and this
predictive density is also very tight. The second factor in the three-factor
model is most highly correlated with the long rate ~although the maximum
correlation between this factor and all of our observables is under 75 percent!.

Under the two-factor model, the correlations between both factors and var-
ious measures of interest rate variance are small in absolute value. There is
weak negative correlation between the variance of the first factor and the
variance of the 90-day bill rate and the variance of the five-year PO rate.
There is weak positive correlation between this factor and the variance of
the 25-year PO rate and the variance of the slope of the yield curve ~as
measured by the difference between the five-year PO rate and the 90-day
bill rate!. Thus, by looking at levels, we would infer that the first factor is
proxying for ~the negative of ! the slope of the yield curve, and the second
factor is proxying for the long rate. The third factor from the three-factor
model is highly correlated with both the five-year PO yield and the variance
of the yield curve slope.

Since the yields and the factors are highly persistent, it is possible that
some of the correlation in levels is spurious. For this reason, we also exam-
ine the correlations between the rates of change of the factors and various
observables for the two-factor model and the three-factor model. This analy-
sis does indeed suggest that some of the correlations in levels may be spu-
rious. For example, in the two-factor model, the correlation between the rate
of change in the first factor and the rate of change in the negative of the
slope is 48 percent ~compared to 99 percent in levels!. This is still the high-
est absolute value of the correlations, so the “identification” of the first fac-
tor is the same in rates of change as in levels. The effect of using rates
instead of levels is similar for the second factor. Here the largest absolute
correlation is on the rate of change in the yield on the 15-year PO, but the
correlation is 38 percent. The precision of the correlation is much less when
we look at rates of change than at levels. For example, in the two-factor
model, the 95 percent range on the correlation between Factor 2 and the
yield on the 15-year PO is @0.92, 0.96# , whereas the 95 percent range on
the correlation between the rates of change of Factor 2 and the yield on the
15-year PO is @0.19, 0.52# . These results are qualitatively the same in the
three-factor model, where none of the correlations between the rates of change
of the factors and observables is greater than 50 percent ~the strongest such
correlation being that between the second factor and the long rate!.

We also examine the correlations between the rates of change in the fac-
tors and the rate of change in seasonally adjusted money supply ~measured
by M2!. Since this weekly data is announced on Mondays, we align the weeks
with both the lead and lagged weeks in our sample ~Tuesday closing data!.
This analysis suggests that Factor 2 from the two-factor model and Factors
2 and 3 from the three-factor model are uncorrelated with money, whereas
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Factor 1 under both models has a small negative correlation with next week’s
money supply.

D.3. Cross-Sectional Properties

Bond traders may feel that certain bonds are mispriced relative to neigh-
boring instruments and engage in barbell spreads or other positions. A term
structure model may be evaluated not just by how it does in characterizing
the time series of the individual bonds, but also by how well it characterizes
the relationship across the various bonds.

Table VII summarizes the average cross-sectional properties across the
sample period. The functions reported are slope ~r5, t 2 r1, t !, curvature-1
~r1, t 1 r5, t 2 2{r3, t !, curvature-2 ~r1, t 1 r5, t 2 2{r4, t !, curvature-3 ~r1, t 1
r5, t 2 203{~r2, t 1 r3, t 1 r4, t !!, and hump ~Maxm~rm, t ! 2 r5, t !. We construct

Table VII

Overall In-Sample Fit of Cross-Sectional Properties
Two-Factor versus Three-Factor CIR Models

Here we compare the functions of the actual yields related to the cross-section of the yield curve
with the predictive densities of those functions from both the two- and three-factor models. The
functions are defined as follows: Slope 5 r5,t 2 r1,t; Curve-1 5 r5,t 1 r1,t 2 2{r3,t; Curve-2 5 r5,t 1
r1,t 2 2{r4,t; Curve-3 5 r5,t 1 r1,t 2 2

3
_ {~r2,t 1 r3,t 1 r4,t!; Hump 5 Maxm~rm,t! 2 r5,t. The first

subscript indexes the term of the yield. 1 is for the 90-day yield; 2 is for the 180-day yield; 3 is
for the 5-year yield; 4 is for the 15-year yield; and 5 is for the 25-year yield. RMSE rel. to med.
is the root-mean-square error of the model for the 351 realizations of each function in the
sample. The bands referred to in this table are 95%ile bands from the posterior distribution of
the relevant function ~constructed by integrating over the parameter and state variable space!.
All entries in this table are in basis points.

Function of
Interest

RMSE Rel.
to Med.

~Bas. Pts.!
% Not in

95%ile Bands
Avg Dev

from Band
Avg Band

Width
Std. Dev. of
Band Width

Panel A: Two-Factor Model

Slope 17.3 61.2 9.5 21.7 3.5
Curve-1 59.1 87.8 43.8 23.0 4.2
Curve-2 22.6 55.0 13.8 25.7 3.6
Curve-3 36.9 86.0 27.4 13.0 0.9
Hump 7.2 96.6 3.2 1.8 1.5
* ~Hump! dG~e! 5.0 85.6 2.3 1.7 1.4

Panel B: Three-Factor Model

Slope 11.5 32.8 4.8 22.7 1.5
Curve-1 41.4 61.8 27.4 37.9 3.6
Curve-2 18.9 43.9 11.2 27.4 6.7
Curve-3 28.4 65.5 19.4 22.4 2.6
Hump 3.0 71.5 0.3 4.2 3.5
* ~Hump! dG~e! 3.0 65.2 0.4 4.3 2.8
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predictive densities for each observation in the sample. The observation on
that date is compared to the model predictive density, then these are eval-
uated or averaged over the 351 weeks in the sample. The hump function is
nonlinear in the yields, so we present this function computed each of two
ways. In the first method, we simply ignore the errors, while in the second,
we integrate over the error space, so that the predictive density is actually
of an expectation from the union of the CIR model and the model of data
errors. This integral is evaluated numerically at each of the iterations within
the Gibbs sampler, by taking 10,000 draws from the error space ~a ~351 3 5!
matrix, generated from the S from that Gibbs draw!. An antithetic variate
technique is used to reduce the numerical variance. Comparing the two-
factor and three-factor models in this metric yields the same qualitative
ranking as the likelihood-based comparisons. In all five cases, the root-mean-
square error is lower for the three-factor model than for the two-factor model.
The three-factor model produces wider predictive density bands than the
two-factor model for all five functions of interest. These wider bands contain
about twice as many observations as the corresponding bands from the two-
factor model.

Bond traders and fixed income portfolio managers may be interested in
comparing “bullet” and “barbell” positions. A question such analysts fre-
quently confront is whether to concentrate on a single intermediate term
instrument versus buying short- and long-term instruments. The difference
between such positions over time is closely related to the notion of convexity
to bond traders. A butterf ly regression may be used to characterize such
positions. In particular, we regress log changes in an intermediate yield on
log changes in the shorter and longer term yields. Naturally, under almost
any context ~especially the posited model!, the regressors in this regression
are endogenous, which means the OLS estimators are asymptotically biased.
Nevertheless, these asymptotic properties are of no concern for the purpose
at hand. The slope, for example, of this regression is simply another function
of interest. As with all other functions of interest, this also gives us another
metric within which to evaluate the precision of the parameter estimates. As
above, we integrate numerically over the error space to construct the pre-
dictive density of the expectation taken over the error space.

The results of these regressions on the data, as well as under the two- and
three-factor models are reported in Table VIII. There are three sets of re-
gressions reported in the table for the different combinations of contiguous
durations in our sample. Panel A shows the results—integrating over the
errors—of regressing the change in the 180-day bill rate on the contempo-
raneous changes in the 90-day and 5-year rates. Panel B reports the results
for the similar regression of the 5-year rates on the 180-day and 15-year
rates, and Panels C and D do the same for the 15-year rate regressed on the
5-year and 25-year rates. We replicated these panels using the change in
rates ~instead of log changes as reported! and find very similar results.

These tables confirm the ability of the three-factor model to better fit
cross-sectional properties than the two-factor model. An important feature
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Table VIII

Butterfly Regression Summary: Data and Predictive Densities
from the Two- and Three-Factor CIR Models

This table shows actual and predictive densities from the following regressions:

ln rm, t 2 ln rm, t21 5 b0 1 b1{~ln rm21, t 2 ln rm21, t21! 1 b2{~ln rm11,t 2 ln rm11, t21! 1 et

where r1, t is the yield on the 90-day T-bill on week t in the sample; r2, t is the yield on the
180-day T-bill; r3, t is the yield on the 5-Year Principal Only Strip.; r4, t is the yield on the
15-Year Principal Only Strip.; r5, t is the yield on the 25-Year Principal Only Strip. The t sta-
tistics are computed using GMM ~Newey–West procedure, with Andrews’ procedure to compute
the optimal lag length ~M !!. The subscripts on these statistics correspond to the regression
coefficients. This regression is estimated on the actual data. The predictive density is con-
structed by estimating the regression for the reconstructed yields from each of the Gibbs draws.
These regressions are integrated numerically over the estimated error structure, so that we
compare the data to the predictive densities of expectations taken over the error space.

Two-Factor Three-Factor

Parameter Actual 2.5%ile Median 97.5%ile 2.5%ile Median 97.5%ile

Panel A: ln r2, t 2 ln r2, t21 5 b0 1 b1{~ln r1, t 2 ln r1, t21! 1 b2{~ln r3, t 2 ln r3, t21! 1 et

b0 20.00003 20.00005 20.00004 20.00003 20.00001 0.000002 0.00002
b1 0.669 0.003 0.113 0.283 0.344 0.532 0.751
b2 0.359 0.420 0.528 0.611 0.515 0.595 0.663
b1 1 b2 1.028 0.519 0.637 0.825 0.973 1.130 1.284
t0 20.064 21.20 21.01 20.66 20.40 0.06 0.59
t1 15.25 0.071 2.47 5.79 7.72 12.26 17.22
t2 9.94 23.63 32.89 42.14 23.57 35.72 48.52
r 2 0.822 0.766 0.865 0.917 0.899 0.943 0.969
se 0.0093 0.0009 0.0011 0.0013 0.0008 0.0009 0.0011
M 3 2.1 2.7 3.5 2.76 3.27 3.63

Panel B: ln r3, t 2 ln r3, t21 5 b0 1 b1{~ln r2, t 2 ln r2, t21! 1 b2{~ln r4, t 2 ln r4, t21! 1 et

b0 0.00009 0.00005 0.00007 0.00008 0.00002 0.00003 0.00004
b1 0.3048 0.628 0.882 1.176 0.339 0.492 0.664
b2 0.8780 0.576 0.885 1.142 0.712 0.891 1.054
b1 1 b2 1.1828 1.608 1.760 1.966 1.311 1.382 1.464
t0 0.202 1.108 1.262 1.396 0.712 0.891 1.054
t1 9.79 10.08 15.34 22.64 7.773 12.119 17.112
t2 22.82 8.15 13.94 19.57 13.956 19.203 24.637
r 2 0.817 0.832 0.915 0.955 0.930 0.961 0.979
se 0.0093 0.0012 0.0015 0.0018 0.00085 0.00100 0.00118
M 2 2.6 3.1 3.5 2.8 3.2 3.4

Panel C: ln r4, t 2 ln r4, t21 5 b0 1 b1{~ln r3, t 2 ln r3, t21! 1 b2{~ln r5, t 2 ln r5, t21! 1 et

b0 20.00015 20.00002 20.00002 20.00001 20.00002 20.00002 20.00001
b1 0.3617 0.351 0.402 0.451 0.326 0.439 0.540
b2 0.6438 0.342 0.415 0.484 0.271 0.416 0.601
b1 1 b2 1.0055 0.762 0.816 0.868 0.788 0.857 0.946
t0 20.499 20.91 20.78 20.66 20.84 20.68 20.50
t1 11.15 37.74 49.03 61.19 11.284 15.865 21.037
t2 15.23 15.12 22.63 31.94 5.376 8.577 12.081
r 2 0.894 0.902 0.944 0.969 0.915 0.954 0.976
se 0.0056 0.0006 0.0006 0.0007 0.00065 0.00075 0.00086
M 0 2.75 3.19 3.52 3.07 3.47 3.73
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of these regressions is the sum of the two slope coefficients. In none of the
three regressions does this sum estimated from the data fall within the 95th
percentile bounds of the predictive density of the sum, from the two-factor
model. At the shortest end ~Panel A!, the value of this sum estimated from
the data is 1.028, and the 97.5 percentile in the two-factor model predictive
density is 0.825—the estimate is 5.1 standard deviations higher than the
mean of the predictive density. This value from the data falls within the
95th percentile likelihood density from the three-factor model, however. Sim-
ilarly, at the longest end of the yield curve, this sum is 1.006 from the data,
and the predictive density’s 97.5 percentile from the two-factor model is 0.868
~0.946 from the three-factor model!. However, in the middle of the yield curve
~Panel B!, this sum is well below the 2.5 percentile of the predictive density.
The estimated sum is 1.1828, while the 2.5 percentile from the predictive
density from the two- ~three-! factor model is 1.608 ~1.311!—the estimate is
6.5 ~5.1! standard deviations lower than the mean of the predictive density.

Another important cross-sectional property that has been examined in sev-
eral earlier empirical analyses of the term structure is the relative impor-
tance of each of the factors in explaining the variance-covariance matrix;
Dybvig ~1997! looks at this property to isolate the relative importance of
possible factors, for example. Traders may want to know how much risk can
be eliminated by hedging just the first and second factors. The relative im-
portance of the factors is also important in model building. In particular, we
have shown that the statistically motivated likelihood comparisons favor the
three-factor model, although the two-factor model has a smaller equally
weighted pricing error. By looking at the principal components analysis, we
can identify the maximum improvement that a three-factor model could afford.

Again, we numerically integrate over the residuals to compare the data
with the predictive density of the model’s expectation ~averaging over the
error space!. Table IX reports the results from a principal components analy-
sis on the variance–covariance matrix of the five yields—both from the data
and the predictive densities. We see that in the data, 71.3 percent of the
total variation in the five bonds is explained by the first eigenvalue. In the
two-factor model, if errors are ignored, then the predictive density on this
percentage is centered around 88 percent, with the 95th percentile range of
the predictive density @85.4 percent, 89.8 percent# . When we integrate over
the errors, this predictive density is centered at 84.4 percent, and the 95th
percentile range of the predictive density is @73.5 percent, 90.4 percent# . The
precision of this statistic is low and the predictive density is highly skewed.
Nevertheless, the 71.3 percent estimated from the data falls outside of this
range—suggesting that along this metric, the data and the model are at
odds.

The percentages explained by the first two and three eigenvalues in the
data line up well with the predictive density from the two-factor model,
however: Both of these statistics fall within the interquartile ranges of the
predictive densities. The percentage explained by the first four eigenvalues
also falls within the 95th percentile band of the predictive density.

1508 The Journal of Finance



Comparing the predictive densities from the two-factor and three-factor
models in this metric produces surprising results. First, when errors
are ignored, the percentage explained by the first factor is just slightly
lower for the three-factor ~87.5 percent, on average! than the two-factor
model ~87.8 percent!. Without errors, the three-factor model only has
1.8 percent of the total variation ~i.e., 99.8 percent–98.0 percent! explained
by the third factor. For many purposes, this feature is probably more
telling than a portmanteau statistic. Integrating over the errors gener-
ates predictive densities that are more striking for the three-factor model.
Specifically, the explanatory effect of each of the first four eigenvalues is
less in the two-factor model than in the three-factor model. Along this
metric, the two factor model looks more like the data than the three-factor
model.

D.4. Expectations Hypothesis

There have been several recent attempts to examine whether dynamic
term structure models, such as CIR, are consistent with some of the em-
pirical regularities of interest rate dynamics observed in tests of the pure
expectations hypothesis ~PEH!. For example, Campbell and Shiller ~1991!

Table IX

Principal Component Analysis: Data and Predictive
Densities from the Two- and Three-Factor CIR Models

This table shows actual and predictive densities of the percentage of the total variation in the
variance–covariance matrix of the log changes in weekly yields for the five instruments in our
sample. In the base case, the predictive densities are constructed by integrating over the error
space ~numerically!. In the No error case, the errors are ignored when constructing the predic-
tive densities.

% Explained
by Eigen Value Actual 2.5%ile 25%ile Median 75%ile 97.5%ile Mean

Std.
Dev.

2-factor model
1 71.3 73.5 81.7 84.4 86.9 90.4 83.9 4.26
1 No errors 85.4 87.0 87.8 88.5 89.8 87.7 1.14
2 92.4 88.4 91.2 92.5 93.7 95.2 92.4 1.78
2 No errors 99.5 99.5 99.6 99.6 99.6 99.6 0.032
3 96.4 94.6 95.9 96.6 97.1 97.8 96.5 0.83
3 No errors 99.90 99.92 99.93 99.93 99.94 99.93 0.0086
4 99.0 98.9 99.3 99.4 99.5 99.7 99.4 0.18
4 No errors 99.98 99.98 99.98 99.98 99.99 99.98 0.0015

3-factor model
1 71.3 86.0 89.5 91.2 92.6 94.1 90.9 2.18
1 No errors 84.9 86.6 87.5 88.3 89.8 87.5 1.26
2 92.4 93.6 94.9 95.6 96.3 97.2 95.6 0.96
2 No errors 97.5 97.8 98.0 98.1 98.4 98.0 0.23
3 96.4 97.4 97.9 98.2 98.5 98.9 98.1 0.38
3 No errors 99.8 99.8 99.8 99.9 99.9 99.84 0.019
4 99.0 99.3 99.5 99.6 99.6 99.8 99.6 0.12
4 No errors 99.98 99.98 99.98 99.99 99.99 99.98 0.0020
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document that unlike the predictions of the PEH, yield changes are
often inversely related to lagged yield spreads. Dai and Singleton ~2000b!
show that these findings are generally compatible with a large class
of dynamic term structure models. With two factors, the CIR model
may produce negative coefficients in this type of regression, as shown by
Roberds and Whiteman ~1999!. The risk premia are proportional to the
factors; thus, relative movements in the two factors produce time-varying
risk premia.

We may view the slope coefficient—for example, from a regression like
Campbell and Shiller’s ~1991!—as another function of interest that combines
time series and cross-sectional properties of the data, and, as such, we can
construct the exact predictive density of the function in the manner de-
scribed above. The ability to predict the future of interest rates as a function
of the current term structure is obviously an important question that in-
volves time-varying risk premia, which may or may not be compatible with
a particular specification. Table X looks at the ability to predict future 90-
day bill yields given the 90-day forward rate in the spirit of the PEH. In
particular, it summarizes results from the following regression:

rt113, t126 2 rt, t126 5 b0 1 b1~rt, t126 2 rt, t113! 1 ft . ~9!

Given the construction of our sample, this is the only set of contiguous
forwards and yields available. In this regression, there is no overlapping, so
there are 26 observations in the sample. Unlike many earlier studies, the
point estimate of the slope coefficient is positive ~0.12!, but estimated very
imprecisely using OLS. In fact, the GMM standard error is 0.56, which means
that standard inference would be unable to reject the null hypotheses that
the true b1 is 1, 0, or 21.

The means of the predictive density of this coefficient from the two- ~three-!
factor models when the errors are ignored are 20.50 ~20.66!. When we in-
tegrate over the errors as above, the mean of the predictive density of this
coefficient is 20.84 ~21.48!. This is very much in keeping with earlier stud-
ies. These predictive densities are also fairly tight, relative to the asymptotic
standard errors of the regressions. The interquartile ranges on this slope
coefficient are @20.93, 20.76# ~ @21.62, 21.33# !. The r 2 from these regres-
sions is very small—both in the data and the likelihood. The model esti-
mated on the data has an r 2 of 0.23 percent, and the mean of the predictive
density integrating over errors is 12.57 percent ~22.20 percent!.

Thus, in this panel, we obtain the standard result that the regression
slope coefficient is estimated imprecisely using OLS. But the point estimate
in the data is positive, and the 95th percentile predictive density band is
strictly negative. In this metric—which combines time-series and cross-
sectional properties—there is significant inability of the model to accommo-
date the data, and the two-factor model more closely resembles the data
than the three-factor model.
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Table X

“Expectations Hypothesis” Projection: Data and Predictive
Densities from the Two- and Three-Factor CIR Models

This table shows actual and predictive densities from the following regressions:

rt113,t126 2 rt,t126 5 b0 1 b1~rt,t126 2 rt,t113! 1 ft .

This is a standard regression used to examine the “expectations hypothesis.” The sample of 351
weeks has 26 observations for this regression. The t statistics are computed using GMM ~An-
drews’ augmented Newey–West procedure to compute the optimal lag length ~M !!. This regres-
sion is estimated on the actual data. The predictive densities are constructed differently depending
on the treatment of the errors in the initial specification. In Panels B and D, the errors are
ignored, so the posteriors are constructed from the regression statistics for the reconstructed
yields from each of the Gibbs draws. In Panels A and C, the posterior is constructed estimating
the mean of the regression statistics for the reconstructed yields from each of the Gibbs draws
averaged over 12,500 draws from the error matrix. ~So these functions are expectations under
the error-augmented CIR model.!

Parameter Actual 2.5%ile 25%ile Median 75%ile 97.5%ile Mean Std. Dev.

Panel A: Two-Factor—Integrating over Errors in Posterior

b0 20.00285 20.0017 20.0014 20.0013 20.0011 20.0008 20.0013 0.0002
b1 0.124 21.1105 20.9330 20.8415 20.7563 20.5534 20.8435 0.1401
t0 22.26 21.4434 21.2027 21.0877 20.9554 20.7103 21.0795 0.1876
t1 0.218 22.8179 22.3552 22.1142 21.8767 21.3452 22.1117 0.3693
r 2 0.0023 0.0693 0.1053 0.1238 0.1446 0.1886 0.1257 0.0303
sf 0.0046 0.0048 0.0049 0.0049 0.0050 0.0052 0.0049 0.0001
M 0 0.7131 0.8953 0.9840 1.0732 1.2537 0.9847 0.1358

Panel B: Two-Factor—Ignoring Errors in Posterior

b0 20.00285 20.0020 20.0019 20.0018 20.0017 20.0016 20.0018 0.0001
b1 0.124 20.6290 20.5457 20.5017 20.4558 20.3676 20.5006 0.0668
t0 22.26 21.58 21.44 21.37 21.31 21.19 21.38 0.10
t1 0.218 20.91 20.76 20.68 20.61 20.48 20.69 0.11
r 2 0.0023 0.0065 0.0105 0.0129 0.0156 0.0220 0.0132 0.0039
sf 0.0046 0.0045 0.0047 0.0047 0.0048 0.0050 0.0048 0.0001
M 0 2 3 3 4 4 3 1

Panel C: Three-Factor—Integrating over Errors in Posterior

b0 20.00285 20.0017 20.0015 20.0014 20.0013 20.0012 20.0014 0.0001
b1 0.124 21.8617 21.6225 21.4709 21.3303 21.1461 21.4811 0.1954
t0 22.26 21.4480 21.3232 21.2394 21.1634 21.0510 21.2434 0.1063
t1 0.218 23.7984 23.3253 23.0187 22.7374 22.2691 23.0263 0.4085
r 2 0.0023 0.1495 0.1927 0.2204 0.2519 0.2989 0.2220 0.0404
sf 0.0046 0.0052 0.0053 0.0054 0.0055 0.0057 0.0054 0.0001
M 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel D: Three-Factor—Ignoring Errors in Posterior

b0 20.00285 20.0019 20.0018 20.0017 20.0016 20.0014 20.0017 0.0001
b1 0.124 20.7818 20.7012 20.6580 20.6143 20.5251 20.6571 0.0651
t0 22.26 21.4921 21.3421 21.2724 21.2066 21.0755 21.2754 0.1042
t1 0.218 21.3973 21.1818 21.0793 20.9778 20.7939 21.0841 0.1544
r 2 0.0023 0.0190 0.0277 0.0330 0.0389 0.0528 0.0338 0.0086
sf 0.0046 0.0047 0.0049 0.0050 0.0051 0.0053 0.0050 0.0002
M 0 0.0000 1.0000 1.0000 2.0000 3.0000 1.3386 0.6772
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D.5. Information about Derivatives and Hedging in Yields

Another function of the model parameters and state variables is a deriv-
ative price. In this subsection, we look at pricing an interest rate derivative
relative to the estimated term structure. This provides another metric for
evaluating the precision of the parameter and state variable estimates. One
of the nice features of CIR is that prices of any interest rate claim can be
derived. A trader might consider using interest rate data to estimate a mod-
el’s parameters and then use the estimated model to obtain derivative prices
and hedge ratios. The approach in this paper is uniquely suited to evaluate
the precision of such an exercise.

Given the state variables and parameters, evaluation of any interest rate
derivative’s price involves taking an expectation over the conditional density
of the state variables at the expiration of the derivative in the appropriate
measure.15 Of course, we must first identify the domain in state variable
space where the futures price exceeds the option’s strike price. In the two-
factor model, this involves a two-dimensional integral ~see Chen and Scott
~1992! for details!. For each iteration from the Gibbs sampler, we have to
evaluate this integral to construct a single option price. The predictive den-
sity on this option price is constructed by evaluating this integral and solv-
ing for the option price at each iteration from the Gibbs sampler. We can
construct a predictive density on the option price to examine how much in-
formation there is in bond yields for the pricing of derivatives. As an exam-
ple, we consider an option which expires in 6 weeks, on an underlying futures
contract which expires in 10 weeks on an eight percent coupon bond that
matures 15 years after the expiration of the futures contract. We construct
the predictive density on the price of this futures option relative to the esti-
mated term structure.16

For illustrative purposes, we construct the predictive density on May 24,
1990, when interest rates are high ~and this option is deep out of the money!.
This is a hypothetical option, and we abstract from delivery options, and so
on, to focus on the information in yields about derivative prices. In fact, the
predictive density of the option price is fairly diffuse. We are 90 percent sure
~assuming that the two-factor CIR is true! that the option price lies between
$0.36 and $1.28. If this were a bid-ask spread, it would amount to 112 per-
cent of the midpoint. The median of the predictive density is $0.69; thus the

15 The fact that we are evaluating such a distribution highlights the importance of using the
appropriate densities in the empirical analysis. Even if approximating the transition density of
the state variables as normal does not result in gross pricing errors, it would not provide the
appropriate conditional density—once again a noncentral x2—to use in option pricing.

16 While this function of interest is unlike the previous functions of interest, where we com-
pare the predictive density to the data, the precision of the state variable estimates, per se, is
still relevant in this case. This is because we construct the density of the state variable at the
time the option expires, conditional on its current value. Unlike the predictive density–data
comparisons above, since the purpose here concerns the amount of information about the state
variables and parameters, we ignore the errors in constructing these predictive densities.
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predictive density is asymmetric—it exhibits a right tail and looks like a
lognormal density function.

Consider the same futures option on April 8, 1993, when interest rates are
relatively low ~and this option is in the money!. Here the 90th percentile
band ~from $125.92 through $146.80! is roughly 17 percent of the median
~$136.55!. Here, since the option is so deep in-the-money, the predictive den-
sity of the option price is much more symmetric than in the previous case
~where the option was deeply out-of-the-money!. It is not surprising, given
the above discussion of the lack of identification of the individual param-
eters, that the yield data do not have enough information to pin down de-
rivatives on the long end of the yield curve. While it is conceptually
straightforward to include option prices in the information set of the likeli-
hood function, this would be intractable numerically since just evaluating a
single pdf ~of which thousands must be done for a single Gibbs iteration!
involves computing a two-dimensional integral over the state variable space.

The relatively diffuse predictive density on these option prices is consis-
tent with the notion that, whereas the parameters that determine the shape
of the yield curve are well-identified, the parameters that determine the
dynamics are less well identified. For example, in Table II we see that
the sum of the two factors’ ss, ks, and ls are known precisely relative to the
steady-state parameters u and the steady-state variance. The ratio of
the predictive density interquartile range to the mean for the sums of s is
3.2 percent, k 4.6 percent, and l 3.2 percent. This ratio for the sum of u is
21 percent, and, for the steady-state variance, it is 95 percent. In general,
we would expect that the predictive density would be more diffuse the less-
in-the-money the option, since, for a deep in-the-money option, the model
inf luence on the price is less.

Hedging interest rate exposure is at least as important a problem as pric-
ing interest rate derivatives. Just as we construct a predictive density on an
option price, we can construct such a density on an option’s deltas or elas-
ticities. For a two-factor model, there are two deltas—one for each factor. We
construct the predictive densities for the factor elasticities for the option
above ~the out-of-the money option of May 24, 1990!. The mean ~standard
deviation! of the elasticities with respect to the two factors are 25.89 ~0.41!
and 212.50 ~0.99!. The predictive densities are both symmetric around their
means and look like Gaussian densities. The elasticity with respect to the
first factor is smaller and less diffuse than the option price’s elasticity with
respect to the second factor. ~No doubt because the second factor has both a
higher and more diffuse steady-state variance and a more diffuse predictive
density on u ~Table II!.!

For the deep in-the-money option of April 8, 1993, the factor elasticities
are much lower here than they are for the out-of-the-money option. It is still
the case that the predictive density of the elasticity of the first factor is
much tighter and smaller than that of the second factor. Clearly, these factor
elasticities are important for fixed income management and trading–not only
the levels, but the entire distributions.
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Thus, there is not enough information in this panel of 351 weeks and five
bond yields to pin down option prices on long-term bonds well. Further, one
of the factor’s elasticity is fairly tight, whereas the elasticity on Factor 2 is
diffuse. This suggests that to use the CIR model to price and hedge deriva-
tives requires either a longer time series of yields or derivative prices them-
selves in the sample. For the two-factor model, and the numerical procedures
used in this paper, these possibilities would be virtually infeasible on even
the fastest computers.

VI. Conclusions

This paper introduces a framework to estimate the model of Cox, Inger-
soll, and Ross wherein all interest rates are used to learn about all factors,
and the exact discrete-time transition densities from the continuous-time
model are used. Because we know the transition densities of the state vari-
ables, we use the full conditional densities for these factors. Although they
are nonstandard, we demonstrate how to use numerical techniques to sam-
ple from them. Thus, we learn about the state variables from all of the data,
and the transition from continuous-time theory to discretely sampled data is
exact.

We evaluated one-, two-, and three- ~orthogonal! factor CIR models. The
one-factor model is incapable of explaining the observed volatility of long
bond yields. The two-factor model can generate patterns that look like the
data, but the goodness of fit is in doubt. The three-factor model uses its
higher dimensionality to give a marginally better fit to the shortest- and
longest- term bonds, as well as cross-sectional properties of the yield curve,
but at the same time the fit in the intermediate range of the yield curve
deteriorates. Standard likelihood-based inference agrees with previous find-
ings that the three-factor model is a dramatic improvement on the two-
factor model. In spite of this, the two-factor model has lower overall errors
when we compare the sample data to the predictive densities and weight the
five instruments equally. This insight could not be gained by empirically
identifying a yield with a factor ~since adding an additional factor a priori
means a better in-sample fit!. This insight also suggests that in this high-
dimensional problem, statistical model comparison may not correspond to
comparisons based on what traders find important. A mixture of the two-
and three-factor models may be the best specification, and it is possible that
the correlated factor structure in Dai and Singleton ~2000a! generates such
a mixture, although this is not obvious.

We looked closely at the properties of the two-factor model. Unlike other
studies, we find that the two factors are uncorrelated. However, the shocks
to the factors are negatively correlated. The serial dependence of the model
errors is inconsistent with the theoretical properties of the model. Never-
theless, the average standard deviations of the data errors do not seem out-
rageous: 10 basis points for the 90-day bill; 13 basis points for the 180-day
bill; 28 basis points for the 5-year bond; 20 basis points for the 15-year bond;
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and 24 basis points for the 25-year bond. The amount of information in the
yields for pricing derivatives was also demonstrated. It appears that yields
do not adequately identify factor volatilities to allow precise derivative pric-
ing. We also demonstrate construction of predictive densities for option elas-
ticities. Recent research is bridging early tests of pure expectations models
of the term structure and dynamic term structure models. We show that the
model implies a negative coefficient on the forward rate in predicting future
spot rates, but that in the data this coefficient is positive. Thus, the model
can certainly accommodate the types of departures from PEH seen in earlier
studies, but along this dimension it is different from the data in our sample.

Finally, in the introduction, we noted that future research may explore the
possibility of extending the CIR model to allow for parameter and state vari-
able uncertainty on the part of the representative agent in the economy. The
noted shortcomings of the model suggest that this might indeed be a fruitful
tack. The serially dependent errors in long bonds seen in the benchmark
two-factor case, for example, could occur because the agent is unable to iso-
late where the individual factors are. Short rates are pinned down because
the representative agent knows what the sum of the two factors is, but with
finite information, this agent is unable to separately locate each factor. It is
easy to imagine how such learning errors could be serially dependent. Pur-
suit of such an extension to CIR would seem well motivated by the results in
this paper. Of course, in such a setting, the model restrictions on factor
correlations would hold conditional on agents’ information sets and perhaps
not unconditionally.

Appendix

A. Incorporation of Prior Beliefs

In the text, all results are presented using only the joint likelihood func-
tion. Of course, the tools used and the likelihood approach are commonly
associated with Bayesian, or subjectivist, analysis. Mapping out the surface
of the likelihood is tantamount to specifying a prior that is proportional to a
constant—that is, a diffuse, improper prior. While diffuse priors may serve
to facilitate scientific communication, they may entail problems because the
f lat prior on the parameter space has peculiar implications for functions of
the parameters that are of fundamentally more importance than the param-
eters themselves. Lamoureux and Zhou ~1996! provide an example of this
problem and show that it may be “solved” by using proper priors. The spec-
ification in Lamoureux and Zhou involved highly persistent time series, and,
as such, raises concerns for interest rate data.

Such concerns turn out to be unfounded for the analysis in this paper, as
the qualitative analysis in the text is robust to use of a proper prior. In this
appendix, we show the proper priors used to validate the results in the text
for the two-factor model. Note that there is no need to specify a prior on the
z process. In fact, Geweke ~1995b! notes that latent time-series models have
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the form of a hierarchical prior, where the latent time-series process corre-
sponds to an intermediate level of the hierarchy.

B. Residual Variance–Covariance Matrix

Since the conditional likelihood is inverse Wishart from the perspective of
S, a natural conjugate prior for S is therefore inverse Wishart, or S21 is
Wishart, ~i.e., S21 ; W~v,V!!. The predictive density is then simply

S21 ; WSv1 T,V 1 (
t51

T

et et
'D.

Here the parameters of this density are v 5 20, and

V 5 3
0.00000025 0 0 0 0

0 0.00000045 0 0 0

0 0 0.00000065 0 0

0 0 0 0.00000085 0

0 0 0 0 0.000001

4 .

C. Model Parameters

With a proper prior,

f ~k 6data, all other parameters! @ p~k!L~r 6k, z,{! f ~z 6k,{!,

where p~k! is the prior density on k. Since k and s must be nonnegative, a
natural prior density is the inverted gamma with parameters n and s.17

In this case, the full conditional density has the form

f ~k 6data, all other parameters!

@
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where the constants in the last kernel are defined following ~2! ~with time
subscripts added here since the parameter depends on the entire history of
z!. The proper prior on l is Gaussian.

17 The inverted gamma density is obtained by viewing a standard normal density from the
perspective of the variance of the normal. It has two parameters and looks a lot like a x2

density in shape, that is, it originates at 0 and is skewed to the right.
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The prior on k is inverted gamma. As noted above, the intractability of the
conditional densities requires that we have univariate priors on the k for
each factor. Here the parameters are v1 5 3, and s1 5 0.3; v2 5 3, and s2 5
0.35. Table AI shows percentiles for this prior. For example, we see that the
inverted gamma prior on k1 is skewed to the right: The 2.5 percentile is 0.19,
the median is 0.34, the mean is 0.42, and the 95th percentile is 0.89. The
mean and standard deviation of the prior on k2 are 0.48 and 0.36.

The univariate priors on the standard deviations of the factors, s, are
inverted gamma. In the highlighted case, the parameters are v1 5 v2 5 4,
and s1 5 s2 5 0.025. As shown in Table AI, these priors imply a mean and
standard deviation of the inverted gamma distribution of 3.12 percent and
1.58 percent.

Table AI

Priors and Posteriors for Hyperparameters and Functions
of Interest: 2-Factor Model (Proper Prior)

This table highlights features of the posterior distribution of the eight hyperparameters and
other functions of interest from the two-factor CIR model, ~updating the proper prior using the
351 weeks of yields on the five bonds in the sample!.

Prior
Posterior 5%ile 25%ile Median Mean 75%ile 95%ile Std. Dev. corr~x1, x2!

u1 0.0247 0.0341 0.0450 0.0548 0.0628 0.1139 0.0379 0.0000
0.0415 0.0427 0.0463 0.0461 0.0482 0.0523 0.0035 −0.3225

u2 0.0123 0.0170 0.0222 0.0273 0.0311 0.0584 0.0192
0.0061 0.0068 0.0074 0.0073 0.0078 0.0083 0.0007

u1 1 u2 0.0441 0.0576 0.0720 0.0829 0.0941 0.1547 0.0455 ND
0.0485 0.0504 0.0537 0.0534 0.0560 0.0592 0.0034

s1 0.0163 0.0215 0.0274 0.0312 0.0361 0.0593 0.0158 0.0
0.0368 0.0384 0.0400 0.0405 0.0427 0.0449 0.0026 0.0312

s2 0.0163 0.0215 0.0274 0.0312 0.0361 0.0593 0.0158
0.0878 0.0894 0.0905 0.0906 0.0917 0.0935 0.0017

s1 1 s2 0.0381 0.0479 0.0576 0.0627 0.0712 0.1036 0.0231 ND
0.1261 0.1287 0.1308 0.1310 0.1332 0.1365 0.0032

k1 0.1854 0.2551 0.3389 0.4148 0.4746 0.8906 0.2854 0.0
0.5894 0.6378 0.6740 0.6786 0.7289 0.7599 0.0543 −0.3384

k2 0.2149 0.2966 0.3939 0.4842 0.5520 1.0181 0.3625
0.1033 0.1096 0.1170 0.1186 0.1256 0.1423 0.0115

k1 1 k2 0.4850 0.6320 0.7875 0.8999 1.0234 1.6596 0.4798 ND
0.7193 0.7572 0.7883 0.7972 0.8447 0.8806 0.0515

l1 20.2319 20.1547 20.1000 20.1000 20.0457 0.0327 0.0800 0.0
−0.2135 −0.1932 −0.1347 −0.1429 −0.1102 −0.0571 0.0512 −0.3365

l2 20.2035 20.1246 20.0700 20.0700 20.0168 0.0606 0.0800
−0.1851 −0.1674 −0.1591 −0.1607 −0.1511 −0.1451 0.0119

l1 1 l2 20.3556 20.2466 20.1704 20.1700 20.0943 0.0158 0.1131 ND
−0.3798 −0.3475 −0.2946 −0.3037 −0.2626 −0.2277 0.0485

sss,1
2 {1000 0.1077 0.2671 0.5156 1.0628 1.0488 3.3623 3.6872 0.0000

0.0397 0.0461 0.0549 0.0568 0.0655 0.0810 0.0129 −0.2634
sss,2

2 {1000 0.0462 0.1146 0.2208 0.4546 0.4490 1.4401 1.5611
0.1779 0.2209 0.2590 0.2567 0.2900 0.3328 0.0468

~sss,1
2 1 sss,2

2 !{1000 0.2635 0.5299 0.8954 1.5125 1.6015 4.3294 4.1416 ND
0.2418 0.2783 0.3140 0.3135 0.3444 0.3906 0.0452

Notes: Prior and posterior ~bold! distribution characteristics of hyperparameters and functions of interest from the two-factor
CIR model. The parameters are as defined in the text ~e.g., equations ~1! and ~3!!. The variable sss, j

2 is the steady-state variance
of factor j. The variable corr~x1, x2! is the correlation between a parameter of Factor 1 and the same parameter of Factor 2. The
closer this correlation is to one in absolute value, the less well identified are the separate factors.
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The prior for l is normal. Here the prior on l1 ; N~20.1,0.082 !, and l2 ;
N~20.07,0.082 !.

The univariate priors on the long-term means of the factors, u, are in-
verted gamma. The two parameters in the priors are v1 5 3, and s1 5 0.04;
and v2 5 3, and s2 5 0.02. We can see the implication of this density and
parameter choice in Table AI: for u1 the mean, median, and standard devi-
ation are 5.5 percent, 4.5 percent, and 3.8 percent, and the corresponding
statistics for u2 are 2.7 percent, 2.3 percent, and 3.8 percent.

Table AI reports properties of the proper prior and the posterior obtained
by using the likelihood to update this prior using Bayes Rule. We can com-
pare Tables AI and II to evaluate the direct effect of the prior on the esti-
mation of the parameters.

The values of sj are robust to the prior. But there are material differences
in the other parameters. The biggest difference appears in the lj param-
eters. The two factors’ median values on this parameter under the diffuse
prior are 225.1 percent and 26.9 percent, whereas, from the highlighted
proper prior, the median values are 213.5 percent and 215.9 percent. This
is not surprising since l is the only parameter that can take on positive and
negative values. The proper prior is centered below 0 ~as seen in Table AI!,
whereas the diffuse prior naturally is centered at 0. It seems that the proper
prior pulls down both factors’ l values, and this affects u and k. The lower
and more diffuse prior on k2 is responsible for the much larger and more
diffuse posterior density for the steady-state variance of factor 2 in Table II,
relative to its counterpart from the proper prior of Table AI. While the pa-
rameters on the individual factors do exhibit some sensitivity to the prior,
the sums of the two factors’ parameters are more robust. For example, the
posterior median values of k1 under the proper and diffuse priors are 0.67
and 0.80, respectively. The corresponding values for k2 are 0.12 and 0.02.
The posterior medians of the sums of the two ks from these two different
priors are 0.79 and 0.82.18

Despite the differences in the parameters, the effect of the proper prior
relative to the diffuse prior is very small for functions that might interest
either a bond trader or analyst. For example, Table III shows the predictive
densities of the weekly yields over the sample and characterizes the goodness-
of-fit of the models. Here we see that the predictive posterior densities on
the sample yields are generally the same widths using either prior. The
overall fit is actually better using the proper prior. As seen in the text when
we compared the two- and three-factor models, the likelihood per se is weighted
toward the short rate and cross-sectional fit. Thus, the proper prior provides
a better fit to the three intermediate yields while the diffuse prior ~i.e., the
likelihood! provides a better fit for the 90-day bill yield and the 25-year PO

18 As in Section D.5, the question of robustness of the posterior to the prior involves the
amount of information contained in the data about the particular aspects of the model. This
data provide relatively precise information about the total risk premium ~the sum of l1 and l2,
for example!, but much less information as to how to assign this across the two factors.
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yield. The biggest difference is at the middle yield ~the 5-year PO!, where
the root-mean-square error of the median of the predictive posterior is 34.4
basis points, using the diffuse prior, and 25.5 basis points from the proper
prior.
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