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Time-Varying Volatility

The fact that stock return volatility is not constant over
time was noted by Mandelbrot (1963, p. 418). He
documented a temporal clustering phenomenon.
Nevertheless from 1963 through 1986 the study of stock
returns primarily focused on the marginal distribution of
returns.
Examples

I Clark, Econometrica 1973.

I Blattberg and Gonedes Journal of Business 1974.

I Tauchen and Pitts Econometrica 1983.
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Discussion

Generally, the lower the frequency of returns, the better fit
the Gaussian density. So monthly returns are more “normal”
than daily returns. This fact works against the hypothesis
(Mandelbrot) that returns follow an unconditional stable
distribution.
Stock returns look different at high frequencies because of
the trading mechanism that generates the ticker. We have
intuition that such “distortions” matter a lot for the
continuous price path, but that they are integrated out at
monthly, even weekly frequency.
Important early analyses of the trading mechanism and its
implications for price dynamics include Niederhoffer and
Osborne (1966) and Roll (1984). These papers are the
forebears of the market microstructure literature.
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GARCH

Engle (1982 Econometrica) extended
heteroskedasticity-consistent variance estimation to the
time-series setting. Because ARCH neatly modeled the
volatility clustering that Mandelbrot had described, it
became widely adapted as a model for speculative price
dynmamics. Especially with the generalization of Bollerslev
(1986 Journal of Econometrics).

rt = εt

εt ∼ N (0, ht)

ht = γ0 + γ1ε
2
t−1 + γ2ht−1
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GARCH Discussion

There are several lingering misconceptions and
misunderstandings about GARCH.

I GARCH is not a stochastic volatility model.
I Like many “time-series models” it is cast in discrete

time, so its adding up properties are unclear.
I Dan Nelson’s work on EGARCH addresses the above

concern and ensures positive coniditional variance on
each date.

The most successful extension to GARCH is the Glosten,
Jagannathan, and Runkle (1994) model:

rt = εt

εt ∼ N (0, ht)

ht = γ0 + γ1ε
2
t−1 + γ2ht−1 + γ3It−1 · ε2t−1

Where It−1 is 0 if εt−1 ≥ 0 and 1 if εt−1 ≤ 0.
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Estimation

The GARCH model is a nice setting to learn MLE using the
Berndt, Hall, Hall, and Hausman (1974) algorithm.

I Must work with log-likelihood.

I Construct the Score matrix.

I Step size algorithm.
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Problems

We typically estimate GARCH(1,1) on a fairly long series of
daily returns; (5 years).
Forecasts from GARCH tend to overstate the persistence of
recent shocks. Lamoureux and Lastrapes (1991, JBES) use
the same logic as Perron (1991) (who looked at means) to
explain this.
We generally find that γ3 in the GJR specification is
positive: Black (1976); Christie (1982). Interpretation of the
leverage effect.
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Whither GARCH

I In retrospect expectations for GARCH as a model of
economic behavior were too high.

I Do we have a better understanding of why we see
volatility clustering?

I Most of the empirical analysis of time-varying volatility
since 2000 is in the realm of realized volatility. This
relies on the quadratic variation theorem, and the
availability of transactions data. The issue here is that
the “microstructure noise” becomes very important, but
is largely viewed as a nuisance.
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Realized Volatility

Consider the problem of estimating the mean and variance of
stock returns given a specific time period (e.g., January 1,
2010 - December 31, 2012). Merton (1980 JFE) shows that
using higher frequency data affords a more precise estimate
of the variance but not of the mean. This point is related to
the quadratic variation theorem.
For X an Itô process:

Xt = X0 +

∫ t

0
σsdωs +

∫ t

0
µsds

[X ]t =

∫ t

0
σ2

s ds
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Realized Volatility

With high frequency data, this would seem to yield a nice
estimator of the variance in any time period. The fly in the
ointment is that we do not actually observe X . A nice paper
on how we might think of integrating out the
“microstructure noise” using high frequency data is Zhang,
Mykland, and Äıt-Sahalia (JASA 2005).
ZMA note that a standard solution to integrating over the
microstructure noise is to sample the data at a lower
frequency (e.g., 5 minutes). But this throws away valuable
information. They go through 5 estimators to motivate their
optimal estimator.
We observe:

Yti = Xti + εti
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ZMA Estimator 1

Ignore the problem. Then:∑
ti ,ti+1∈[0,T ]

(
Yti+1 − Yti

)2
= 2nE (ε2) + Op(n

1
2 )

If we sample the observed price every second, then for one
day, n=23,400. And this estimator has virtually no
relationship to the quadratic variation in X. (Note that it
diverges to ∞ in n.)
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ZMA Estimator 2

This is a “sparse” estimator. ZMA provide the example of a
researcher who has the 23,400 observations of Y , but throws
away 299 of every 300. (Keeping data sampled at a
5-minute interval, so nsparse = 78.)
ZMA show that this is biased (the expected value is
[Xt ] + 2nsparseE (ε2), and it has a large variance arising from
both the noise and discretization.
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ZMA Estimator 3

Instead of choosing an arbitrary nsparse choose an optimal
n∗sparse that minimizes a mean square error of [Y ]sparse. As
ZMA discuss the intuition is that the smaller is E (ε2), the
more frequently one should sample. Intuitively, as the
frequency is lower, the bias due to the noise is reduced, but
the inefficiency due to discretization becomes larger.
(Of course, 5 minutes is the recommended sampling interval
from several practical exercises on estimating realized
volatilities on financial data.)
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ZMA Estimator 4

This estimator might use n∗sparse, and does not throw away
data. So we would use every 5-minute interval in the day.
This remains a biased estimator. (In fact for the manner I
describe the bias is the same as for Estimator 3.)
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ZMA Estimator 5

ZMA show that the best estimator of [X ] given Y is
constructed using two time scales, all and average. Based on
what we have seen already, by using the entire sample, we
can get an estimate of [Y ]. So the intuition here is to form
[Y ] using an average time scale, and then subtract [Y ]
constructed from the full time scale.
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Hull and White (1987)

As noted, we see empirically that implied volatilities move
around over time.
This is enough to reject the Black and Scholes model.
Hull and White (JF 1987) is the first model of options on a
stock with stochastic volatility. They use the Black and
Scholes structure by assuming that the volatility risk is not
priced.
Thus the absence-of-arbitrage value of a European call
option is the integral of the Black-Scholes formula taken
over the volatility process over the option’s remaining life.
Implied volatilities will therefore be (potentially) meaningless
(Jensen’s Inequality).
But, at-the-money options are close-to-linear in volatility.
(Feinstein’s 1987 Yale thesis; Lamoureux and Lastrapes
1993).
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Heston 1993

Heston (1993) has several important extensions to Hull and
White.

1. Volatility risk is priced.

2. Volatility follows a Bessel process.

3. Volatility and the stock price may be correlated. (This
may also be true in HW, but it’s a bit informal.)

Under Heston’s model the evolution of stock returns under
the actual probability measure P is:

dSt = µStdt +
√

vStdzP
t

dvt = κ(θ − vt)dt + σ
√

vtdωP
t

The instantaneous correlation between the two Brownian
motions (dzP

t and dωP
t ) is ρdt.
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Warnings

Note that Heston’s model is cast in continuous time. The
volatility process is the same process used by Cox, Ingersoll,
and Ross in their seminal term structure model. It has the
advantages of being positive and exhibiting mean reversion
and heteroskedasticity.
It is popular because since Feller, integrals are known.
However, discretization is not trivial (Broadie and Kaya OR
2006). See Lamoureux and Paseka (2009) for formalities.
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