1. A British government console is a perpetual obligation to pay $£ 80$ every six months. What are the bond-equivalent yield and the continuously-compounded yield on this console if today is an interest payment date, and its market price is:
(a) $£ 3,200$?
(b) $£ 2,700$?
(c) $£ 3,700$?
2. Consider the problem of buying a $\$ 625,000$ house with a 20% down payment with 2 financing options. The first is a 30 -year fixed rate mortgage with monthly payments and interest rate of 5%. The second is a 15 -year fixed rate mortgage with bi-monthly payments (i.e., 24 payments per annum) and interest rate of 5%.
(a) What are the periodic payments of each mortgage?
(b) Your mortgage broker suggests that the 15-year mortgage is a better deal because the total cash flows are lower. Is he correct? Explain.
3. A note or bond is best viewed as a portfolio of zero-coupon bonds, since we can use the appopriate spot rate to evaluate each coupon payment. But if we know a bond's yield to maturity, we can obtain its value as the sum of an annuity and a lump sum. Of course this only works on the issue date or an interest payment date. Suppose that today is February 15,2019 , obtain the value of the following bonds using the annuity and lump sum approach:
(a) $4 \% 2 / 15 / 2020$ note with a yield to maturity of 3.3%.
(b) $4 \% 8 / 15 / 2021$ note with a yield to maturity of 3.65%.
(c) $3.5 \% 2 / 15 / 2022$ note with a yield to maturity of 3.9%.
(d) $3 \% 8 / 15 / 2047$ bond with a yield to maturity of 4.22%.

Your answers should be in-line with your predictions given by the relationship between the instrument's coupon and yield.

