Perpetuities \& Annuities

An annuity is a stream of regularly-spaced cash flows. Examples of annuities include a standard fixed-rate mortgage, and the interest payments on a Treasury bond. The bond is the sum of an annuity and a lump-sum payment (i.e., the payment of principal on maturity).
We start by solving for the present value of a perpetuity. A perpetuity is a sequence of cash flows that never ends. The most common example is British government Console Bonds. Assume that the annual interest rate is r, and there are p compounding periods per year. Note that r must be on a p-period per year compounding basis. Let $z=\frac{r}{p}$. Then, z is the interest rate per compounding period.
By knowing how to obtain the present value of a future cash flow, we can value a perpetuity by adding all of the cash flows. That is, a perpetuity that pays $\$ 1$ every compounding period is worth $P V$ when discounted at the rate r :

$$
\begin{equation*}
P V=\frac{1}{(1+z)}+\frac{1}{(1+z)^{2}}+\frac{1}{(1+z)^{3}}+\ldots \tag{1}
\end{equation*}
$$

Because this is an infinite sum, we can solve it using differences. Multiply both sides of this equation by $(1+z)$:

$$
\begin{equation*}
P V(1+z)=1+\frac{1}{(1+z)}+\frac{1}{(1+z)^{2}}+\frac{1}{(1+z)^{3}}+\ldots \tag{2}
\end{equation*}
$$

Now subtract (1) from (2):

$$
\begin{equation*}
P V(1+z)-P V=1 \tag{3}
\end{equation*}
$$

This leaves us the result that $P V=\frac{1}{z}$.
This is the formula for a perpetuity that pays $\$ 1$ every p periods per year into perpetuity, at the yield to maturity r. So for a perpetuity that makes a periodic payment of $P M T$ the general formula for its present value (PV) is:

$$
\begin{equation*}
P V=\frac{P M T}{z} \tag{4}
\end{equation*}
$$

Where $P M T$ is paid p times per year into perpetuity, r is the perpetuity's yield to maturity on a p-period compounding basis, and $z=\frac{r}{p}$.
This means that if we know r and $P M T$ we can solve for the perpetuity's present value. If we know the perpetuity's $P M T$ and value we can solve for its yield. If we know r and the present value we can solve for the payment.

So now consider an annuity that expires in T years. This instrument pays $\$ 1 p$ times per year for T years. Let $N=p \cdot T$ be the total number of payments in the annuity.

$$
\begin{equation*}
P V=\frac{1}{z}-\frac{\frac{1}{z}}{(1+z)^{N}} \tag{5}
\end{equation*}
$$

That is the annuity is the same as a perpetuity that starts today minus that perpetuity that starts in T years. For an annuity that makes periodic payments of $P M T$, its value is:

$$
\begin{equation*}
P V=P M T \cdot\left\{\frac{1}{z}-\frac{\frac{1}{z}}{(1+z)^{N}}\right\} \tag{6}
\end{equation*}
$$

The term in brackets is called the annuity factor.
For example, consider a $\$ 250,000$ standard fixed rate mortgage with interest rate of 4%. What is the monthly payment? (A "standard" fixed rate mortgage in the US makes monthly payments over a 30 -year term.)

$$
\begin{equation*}
250,000=\frac{P M T}{.0033}-\frac{\frac{P M T}{.0033}}{(1+.0033)^{360}} \tag{7}
\end{equation*}
$$

In this case the RHS of (4) is 209.46. So we have: $P M T=\frac{250,000}{209.46}=1193.54$.

